사용후 핵연료내 우라늄 및 초우란원소를 회수하는 파이로프로세싱 공정에서 배출되는 금속염화물계 방사성 폐기물은 높은 휘발특성과 붕규산계 유리와의 낮은 상용성으로 인해 고화처리가 쉽지 않은 폐기 물이다. 이를 위해, 본 연구에서는 고화처리의 한 방법으로 탈염화 반응을 통한 고화체제조 개념을 채택 하였다. 솔젤법을 이용하여 탈염화물질, SiO2-Al2O3-P2O5 (SAP)을 합성하였으며 이를 이용하여 탈염화 반 응거동 반응생성물의 고형화 특성을 조사하였다. LiCl계 폐기물과 달리, LiCl-KCl폐기물의 반응은 두 개 의 온도범위에서 반응이 진행되며, 400℃의 경우에는 LiCl이, 약 700℃에서는 KCl이 주로 반응하는 것으 로 확인되었다. 여러 가지 반응실험을 통하여 LiCl-KCl의 탈염화 반응에 가장 적합한 물질은 SAP 1071 (Si/Al/P=1/0.75/1 in molar)인 것으로 확인되었다. 4가지 종류의 고형화 실험을 통하여 고화체의 bulk shape과 densification은 SAP/Salt의 비에 영향 받는 것을 확인하였다. 제조된 고형화 시료는 Product Consistency Test-A법을 이용하여 기본적인 내구성을 평가하였다. 본 연구는 SiO2, Al2O3, P2O5 로 이루 어진 탈염화 물질을 이용하여 반응특성과 고형화 특성에 대한 기본적인 정보를 제공하였으며, 이와 같은 실험을 통하여, 본 연구에서 제안된 탈염화 고화처리방법이 휘발특성이 높고 기존 유리매질과 상용성이 낮은 금속염화물계 폐기물에 적용이 가능함을 확인하였다.
금속염화물계 방사성 폐기물은 전해공정으로 이루어진 파이로프로세싱공정의 주요한 방사성 폐기물이 다. 이와 같은 폐기물은 탄산염이나 질산염과 달리 고온에서 분해되지 않고 바로 휘발되며, 기존의 규산 계 유리와 상용성이 낮아 처리가 쉽지 않다. 본 연구팀은 금속염화물계 폐기물을 고화처리하는 방법으로 탈염화처리법을 채택하였다. 본 연구에서는 그 후속적인 연구로서, 탈염화물질로 제안된 SAP (SiO2- Al2O3-P2O5)의 조성을 변화시켜 LiCl-KCl과의 반응성을 향상시키고 고화공정을 단순화시키고자 하였다. 기본물질계에 Fe2O3를 첨가할 경우 무게반응비 SAP/Salt를 3에서 2.25로 낮출수 있으며, Fe가 Al을 치환 하는 몰분율이 0.1이상이 될 경우에는 오히려 반응성이 점진적으로 감소하는 것으로 확인되었다. 또한 M-SAP에 B2O3를 첨가할 경우에는 유리매질을 사용하지 않고 monolithic form을 제조할 수 있었다. 침출 시험결과 U-SAP 1071이 가장 높은 내구성을 보여주었으며, 1 g의 금속폐기물을 처리시 약 3∼4 g의 고 화체가 발생되며, 이는 기존의 고화처리법보다 약 ⅓∼¼배정도 최종처분부피가 감소되는 효과를 얻을 수 있다. 이상의 실험결과로부터, 기존의 유리고화공정으로 처리가 어려운 휘발성 금속염화물계 폐기물 을 단 하나의 물질을 이용하여 처리할 수 있음을 확인하였으며, 이러한 처리방법은 고화처리시 발생되는 부피를 최소화활 수 있는 대안적인 고화처리방법이 될 것으로 판단된다.
자원순환기본법 제정 및 폐기물관리법의 개정으로 폐자원의 재활용 방향성을 확대하고 직매립 제로화 정책 추진에 따른 2035년 매립률 1.0% 목표의 달성을 위해 재활용 다양화 등 처리개선을 통한 매립억제방안 도출 및 효과 분석이 필요하다. 올바로시스템을 통한 사업장배출시설계폐기물 중 무기성폐기물의 열적처리폐기물류 약 91%(23,799,183 톤/년)는 재활용 처리되고 있으며, 약 8%(2,002,584 톤/년) 매립처분되고 있다. 사업장의 업종에 따라 발생되는 열적처리폐기물의 성상은 매우 다양할 것으로 나타난다. 따라서 한국표준산업분류코드(9차)를 이용하여 업종을 세분화시켜 매립처분량이 많은 업종을 분류하였다. 대분류 21개로 분류하고 제조업(C)의 경우 중분류 항목이 24개로 산업내용의 유사성을 정리하여 8개 항목으로 재분류하였다. 한국표준산업분류코드에 따라 광재류의 매립처분을 살펴본 결과, 매립처분이 가장 많은 업종은 제조업(C)으로 매립처분비율은 49.6%(81,762 톤)를 차지하고 있다. 제조업에서 재분류된 금속업 매립처분 비율이 25.5%(42,020 톤)로 가장 높았으며, 다음으로 전기·전자기계 제조업에서 매립처분비율이 17.3%(28,599 톤) 나타났다. 소각재의 매립처분을 확인한 결과, 전체 발생량 대비 78.8%가 대부분 매립처분 되고 있다. 매립처분량이 가장 많은 업종은 하수・폐기물 처리, 원료재생 및 환경 복원업(E)에서 매립처분비율이 75.7%(1,135,109 톤)을 나타냈다. 또한 제조업(C)에서 매립처분비율 17.9%(268,431 톤)을 나타냈으며 제조업 중 재분류된 업종인 목재 및 제지업에서 매립 처분비율이 13.6%(203,359 톤)로 제조업 중 가장 높은 비율을 차지하고 있다.
한국은 광물자원의 90 %, 에너지의 97 % 이상을 수입하는 국가이며, 매립되거나 단순소각 되는 폐기물 중에 회수 가능한 물질이 56 % 포함되어 있다. 2015년 발생 폐기물의 매립처분 비율은 9.2 %(38,308 ton/day)이다. 이중 사업장배출시설계폐기물이 약 62 %(23,577 ton/day)로 가장 높은 비율을 차지하고 있다. 사업장배출시설계폐기물에서 무기성폐기물의 매립처리량은 소각재 4,283 ton/day, 연소재 3,910 ton/day, 폐주물사류 939 ton/day 순으로 높게 나타났다. 무기성폐기물 중 열적처리 잔재물류의 매립량은 10,637 ton/day로 사업장배출시설계폐기물 매립량의 45.1 %을 차지하고 있는 것으로 조사되었다. 본 연구에서는 무기성폐기물의 매립억제 및 재활용 가능성을 알아보기 위해 강열감량, 총유기탄소, XRF 등의 분석을 통하여 화학적 조성 및 물질특성을 살펴보았다. 예로, 재생연을 생산하는 S사 광재류의 경우 Fe(43.0 %), S(23.1 %), Na(19.4 %) 함유량이 주로 높게 나타났다. 망간 합금철을 생산하는 D사의 광재는 Mn(29.9 %), Si(23.4 %), Ca(23.1 %)의 높은 함량을 나타내었다. M사 폐주물사의 경우 Si (74.2 %)로 대부분이 Si로 형성되어 있음을 확인할 수 있었다.
폐시멘트, 폐콘크리트, 제강 슬래그, 폐수 등을 포함하여 다양한 폐기물들이 여러 산업으로부터 배출되고 있다. 그런데 이러한 폐기물들은 Mg2+ 이온, Ca2+ 이온을 다량 포함하고 있다고 알려져 있다. 폐기물 처리 시 이러한 금속 이온을 활용한다면 MgCO3, CaCO3 등 다른 유용한 물질로 전환시킬 수 있다. 이를 위해 지구온난화를 일으키는 주요 원인으로 알려진 이산화탄소를 사용할 수 있고, 이는 이산화탄소 저감 및 폐기물 처리를 동시에 해결할 수 있을 것으로 보인다. 본 연구에서는 CO2의 용이한 전달을 돕기 위한 습식 흡수제에 대해 제안하고 Henry constant, Diffusivity, 총괄반응속도상수(kov)를 측정하였다. 흡수제는 7 wt% 암모니아, 3 wt% ʟ-Arginine, 1 wt% 부식방지제(Imidazole과 1,2,3-Benzotriazole)를 물에 녹여 제조하였다. 암모니아는 기존에 습식흡수제로 사용되던 MEA보다 저렴한 가격을 가지고 있으며 CO2 흡수 능력 또한 우수하다고 알려져 있다. 최근 아미노산은 우수한 CO2 흡수능력과 친환경적인 특성으로 많은 연구가 진행되고 있으며 두 종류의 부식방지제는 암모니아에 의해 발생할 수 있는 플랜트 장비의 부식을 방지하기 위해 첨가되었다. 303.15 K에서 333.15 K의 온도에서 실험이 진행되었으며 실험 결과와 CO2/N2O analogy를 이용해 각 값을 계산하였다.
Land application of biochar (or charcoal) has increasingly been recognized due to its favorable effect as soil amendments. However, depending upon the nature of biomass and pyrolysis condition, biochar may be rich in hazardous inorganic elements. Giant Miscanthus showed its potential as a promising source for biochar manufacture but, the risk of heavy metal leaching from Giant Miscanthus-derived biochar (GMB) has not investigated. The objective of this study was to investigate the heavy metal leachability of GMB manufactured from 3 different temperatures (400, 500, and 700oC). Elemental composition of C, N, H, S, O and 18 metals were analyzed. Leaching concentration of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn was analyzed using 4 different methods (0.1 N HCl, 1 N NH4OAc, toxicity characteristic leaching procedure, and synthetic precipitation leaching procedure). For comparison, same analysis were performed for two char materials, municipal solid waste char (MWC) and sewage sludge char (SSC), manufactured from pilot-scale muncipal waste gasification plant. Elemental composition of GMB complied with the fertilizer guideline whereas the several heavy metal content (Cd, Ni, Pb, and Zn for MWC, Cr, Cu, Ni, and Zn for SSC) was beyond the criteria. From leaching test, concentration of heavy metals from GMB was positively increased with pyrolysis temperature and the acidity of extractant solution. Leaching concentration of plant nutrients (Ca, K, and Mg) was the highest by 1N NH4OAc. Meanwhile, leaching concentration of Cu from MWC and Pb from SSC exceeded the regulatory standard of Korea and US EPA, respectively. In conclusion, with respect to the risk of heavy metals, Giant Miscanthus-derived biochar will be suitable for land application as a soil amendment, while care should be taken for using municipal waste-derived char materials.