검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 685

        1.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a methodology for predicting the physical properties such as the density of polymer composites, including asphalt binders, and evaluates its feasibility by identifying the quantitative relationship between the structure and properties of individual polymers. To this end, features are constructed using molecular dynamics (MD) simulation results and descriptor calculation tools. This study investigates the changes in the calculated density depending on the characteristics of the training dataset and analyzes the feature characteristics across datasets to identify key features. In this study, 2,415 hydrocarbon and binder-derived polymer molecules were analyzed using MD simulations and 2,790 chemical descriptors generated using alvaDesc. The features were pre-processed using correlation filtering, PCA, and recursive feature elimination. The XGBoost models were trained using k-fold cross-validation and Optuna optimization. SHAP analysis was used to interpret feature contributions. The variables influencing the density prediction differed between the hydrocarbon and binder groups. However, the hydrogen atom count (H), van der Waals energy, and descriptors such as SpMAD_EA_LboR consistently had a strong impact. The trained models achieved high accuracy (R² > 0.99) across different datasets, and the SHAP results revealed that the edge adjacency, topological, and 3D geometrical descriptors were critical. In terms of predictive accuracy and interpretability, the integrated MDQSPR framework demonstrated high reliability for estimating the properties of individual binder polymers. This approach contributed to a molecular-level understanding and facilitated the development of ecofriendly and efficient modifiers for asphalt binders.
        4,200원
        2.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a methodology for predicting properties such as the density of polymer composites, including asphalt binders, and evaluates its feasibility by identifying the quantitative relationship between the structure and properties of individual polymers. To this end, this study investigates the variations in molecular dynamics (MD) results with molecular structural complexity and assesses the independence and correlation of variables that influence density. In this study, MD simulations were performed on hydrocarbon-based and individual asphalt binder molecules. The effects of various temperatures, molecular conditions, and structural features on the density were analyzed. MD-related variables influencing the calculated density were evaluated and compared with experimentally measured densities. The MD-calculated densities were used as target variables in a subsequent study, in which a machine learning model was applied to perform quantitative structure–property relationship analysis.The MD-calculated densities showed a strong correlation with experimental measurements, achieving a coefficient of determination of R2 > 0.95. Potential energy exhibited a tendency to cluster into 4–6 groups depending on the molecular structure. In addition, increasing molecular weight and decreasing temperature led to higher density and viscosity. Torsional energy and other individual energy components were identified as significant factors influencing both potential energy and density. This study provided foundational data for the property prediction of asphalt binders by quantitatively analyzing the relationship between the molecular structure and properties using MD simulations. Key features that could be used in the construction of polymer structure databases and AI-based material design were also proposed. In particular, the integration of MD-based simulation and machine learning was confirmed to be a practical alternative for predicting the properties of complex polymer composite systems.
        4,000원
        4.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbonized blocks with different porosities were prepared by varying the particle size of the filler and subsequent impregnation. The impregnated carbonized blocks were re-carbonized. The use of smaller particles in the filler in the carbonized block was associated with larger porosity, smaller pore size, and a higher impregnation ratio. The block with the smallest average particle size (53 μm), CB-53, had a porosity of 35.9% and pores of approximately 40 μm, while the block with the largest average particle size (413 μm), CB-413, had a porosity of 30.5% and pores of approximately 150 μm. CB-53 had the highest bulk density, electrical resistivity, flexural strength, and impregnation ratio. This is due to the large porosity, which is believed to be due to the presence of more interfaces between particles during the re-carbonization of the impregnated carbonized block, resulting in a better pore-filling effect.
        4,000원
        5.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 다양한 FDM 출력 공정 변수에 따라 결정되는 출력물의 비등방 물성을 구조 해석 과정에서 반영할 수 있는 개선된 해석 방안을 제안하였다. 출력 공정 변수에 대한 물성의 민감도를 분석하였으며, 실제 출력물에 대한 인장 시험을 통해 적층 방향에 따라 이방 특성이 도출됨을 확인하였다. 또한, 출력물에 대한 단면 분석을 통해 적층 레이어 높이 및 필라멘트 채움률 등의 공정 변수 들이 내부 공극 특성에 영향을 미치며, 결과적으로 출력물의 이방 특성이 유발된다는 사실을 확인하였다. 나아가, 적층 방향, 적층 레 이어 높이, 필라멘트 채움률 등이 동시에 고려된 균질화 모델 분석을 통해 출력 과정에서 발생되는 내부 공극 분포가 출력물의 기계적 거동 특성에 미치는 영향을 규명하고자 하였다. 수치 예제로써 로어 컨트롤 암 출력물의 비등방 특성이 반영된 구조 해석을 수행하였 으며, 이를 통해 FDM 출력물 설계 과정에서의 개선된 해석 방안의 타당성을 검증하였다.
        4,000원
        7.
        2025.03 구독 인증기관·개인회원 무료
        아스팔트는 아스팔텐(Asphaltene)과 레진(Resin), 포화분(Saturates), 방향족화합물(Aromatics)로 구성되어 있고, 레 진, 포화분, 방향족화합물의 혼합물을 말텐(Malten)이라 하며, 아스팔텐이 말텐에 분산되어 있는 형태를 가진 콜로이 드 상태의 혼합물이다. 아스팔트를 조성하고 있는 조성물의 조성비, 온도 변화에 따라 결합 상태 및 내부 구조가 변 화하고, 아스팔트의 물성과 상태 등에 영향을 주어, 아스팔트 혼합물이 고온에서 소성변형(Rutting), 저온에서의 균열 (Crack)등의 파손에 영향을 미친다. 이러한 아스팔트 혼합물의 파손을 방지하기 위하여 SBS(Styrene-Butadiene- Styrene Block Copolymer)와 같은 폴리머를 혼합하여 아스팔트의 점탄성을 향상시키고, 오일류와 같은 첨가제를 활 용하여 저온에서 탄성과 유연성을 증가시킨다. 이와 같이 고온과 저온의 성능을 용도에 맞게 개선한 아스팔트를 개질 아스팔트(Polymer Modified Asphalt)라고 하며, 도로의 품질 및 내구성 향상을 위해 개질아스팔트 포장의 수요가 점 차 증가하는 추세로 아스팔트혼합물의 성능 향상을 위해 오일류를 활용한 폴리머 아스팔트의 물성 변화에 대한 연구 가 필요하다고 판단된다.
        8.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As global greenhouse gas reduction regulations are strengthened and the demand for eco-friendly energy increases, renewable energies, including offshore wind power, are growing rapidly. Unlike onshore wind power generation, offshore wind power is located in the ocean. As a result, the offshore wind power substructure is exposed to low temperatures, corrosion, and continuous fatigue loads. Therefore, selecting appropriate materials and welding techniques is crucial for durability. In this study, FCAW welding was performed on S355ML steel (EN10025) for offshore wind power applications. After the welding process, the mechanical properties of the welded joint were evaluated through tensile, low-temperature impact, and hardness tests to assess the welding condition. The study revealed that the tensile and yield strength of the welded joint were superior to those of the base material. Additionally, the impact strength at low temperatures was confirmed to exceed the standard.
        4,000원
        9.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Battery electrodes, essential for energy storage, possess pores that heavily influence their mechanical properties based on the level of porosity and the nature of the pores. The irregularities in pore shape, size, and distribution complicate the accurate determination of these properties. While stress-strain measurements can shed light on a material’s mechanical behavior and predict compression limits, the complex structure of the pores poses significant challenges for accurate measurements. In this research, we introduce a simulation-driven approach to derive stress-strain data that considers porosity. By calculating relative density and the rate of volume change under compression based on porosity, and applying pressure, we conducted a parametric study to identify the elastic modulus (E) in relation to the rate of volume change. This information was utilized within a material modeling equation, generating stress-strain (S-S) curves that were further analyzed to replicate the compression behavior of the electrode material. The outcomes of this study are expected to improve the prediction accuracy of mechanical properties for porous electrode materials, potentially enhancing battery performance and refining manufacturing processes.
        4,000원
        10.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium alloys, among various non-ferrous metals, are utilized in diverse fields from the automotive industry to aerospace due to their light weight and excellent specific strength. In the previous Part I study, fiber laser BOP experiments were conducted to derive basic welding characteristics and appropriate bu竹 welding conditions. Subsequently, in the Part II experiment, butt welding was performed, and through tensile tests, hardness tests, and cross-sectional observations, it was found that at laser power of 2.0 kW and welding speed of 50 mm/s, 93% of the base metafs tensile strength and 63.4% of its elongation could be achieved. In this Part III experiment, the microstructures of the base metal and the center of the weld were observed in butt-welded specimens. Through this, laser power and welding speed, on the mechanical behavior and microstructure of magnesium alloys were analyzed
        4,000원
        11.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prevent and improve various metabolic-related diseases caused by modern high-energy eating habits, alternative meats using mushroom materials are being researched. In this study, high-moisture (HMMA) and low-moisture meat analog (LMMA) were prepared using Pleurotus ostreatus fruiting body (oyster mushroom) powder and isolated soy protein as the raw materials in a co-rotating twin-screw extruder. Textural characteristics tended to decrease as the oyster mushroom content increased. HMMA exhibited a fibrous structure similar to that of chicken, whereas LMMA did not show a characteristic fibrous structure. The water absorption capacity of substitute meat decreased with increasing mushroom powder content. Radical scavenging activity, a measure of antioxidant activity, increased with increasing mushroom content in the substitute meat because of the influence of antioxidant components such as polyphenols in mushrooms. In terms of the prepared substitute meat's color, it was less vibrant and lacked intensity, which is thought to make it less appealing to customers. To address this issue, more ingredients need to be investigated.
        4,000원
        12.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the tracking loss rate and shear bond strength under various conditions to evaluate the properties of a trackless tack coat used in asphalt pavement maintenance and conducted a field investigation in which the trackless tack coat was used. Typically, the loss rate and bond strength of a tack coat depend on various conditions. Therefore, to evaluate the loss rate of the tack coat, a wheel-tracking attachment loss rate and tack lifter test were conducted by simulating high-temperature exposure conditions, and the shear bond strength was measured according to the surface condition of the bottom layer. In addition, field investigations of cracks, rutting, and potholes were conducted at 11 sites five years after the application of the trackless tack coat. The results of the wheel-tracking loss rate evaluation showed that the loss rate differed depending on the conditions of the bottom layer, and the loss rate of the trackless tack coat was very low at the same temperature as that of the rapid strength concrete (RSC). In addition, in the results of tack lifter test at 65℃, which had the highest loss rate by wheel tracking loss rate test, it was found that loss rate of trackless tack coat was 0%–29% lower than that of RSC for the same exposure time. As a result of evaluating the effect of the bottom layer's condition on the shear bond strength, it was found that the trackless tack coat was about 20% higher than RSC under the same conditions. In addition, when foreign substances such as dust were present in the bottom layer, the shear bond strength was reduced by approximately 28%. Field investigations of the trackless-applied section showed that potholes and rutting did not occur, and alligator cracks and linear cracks occurred in some sections; however, it was judged that there was little direct relationship with the trackless tack coat. The trackless tack coat was found to have a slight loss owing to tracking, even at relatively high temperatures, and the shear bond strength was excellent. In addition, if the construction process is properly conducted, an advantage will be attained in securing the performance life of asphalt pavements.
        4,000원
        13.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To develop a heat-generating asphalt pavement utilizing a phase-change material (PCM), this study evaluated the application method of a PCM as an asphalt material and the thermal and physical properties of asphalt mixtures. The selection of PCM materials according to the phase-change temperature range suitable for thermal asphalt pavements and the encapsulation method for application to asphalt materials were examined, and encapsulated PCMs (ePCMs) using various materials were produced. The thermal and physical properties were evaluated through chamber experiments and strength tests by applying the ePCMs to asphalt mixtures. The characterization results of the ePCMs showed that ePCM-C had the highest latent heat, thermal stability, and physical stability in the asphalt binder and mixture. The chamber test results showed that ePCM-C, which had high latent heat, had the longest temperature delay time under all conditions. The mixing ratio was calculated by volume to substitute low-density ePCM into the mixture; as the ePCM content increased, the asphalt content also increased. The results of the Marshall stability and indirect tensile strength tests indicated that as the ePCM content increased, the strength and crack resistance properties decreased. Asphalt mixtures containing ePCMs have demonstrated the ability to maintain temperature for a long time within a specific temperature range. If an ePCM is improved such that it is not damaged under the production conditions of asphalt mixtures, it is expected to be sufficiently utilized as a technology for preventing road freezing.
        4,000원
        14.
        2024.10 구독 인증기관·개인회원 무료
        현재 도로포장 유지보수 과정으로부터 노화된 폐 아스팔트가 발생하며, 순환 아스팔트로서 재활용하기 위해 아스팔트 오일을 첨가제 등과 함께 혼합하여 노화된 아스팔트의 성상 회복 및 유동성을 개선하여 도로포 장 재료로 활용하고 있다. 또한 아스팔트 오일의 사용은 저온영역의 성능 개선에도 영향을 미쳐 개질아스팔트 제작에도 활용하고 있으며, 개질 아스팔트는 SBS(Styrene Butadiene Styrene), SBR(Styrene Butadiene Rubber)등 고무계열의 폴리머와 오일 등을 원 아스팔트에 혼합하여 아스팔트 바인더의 공용성을 향상시키는 기술로서 폴리머는 아스팔트의 고온 영역의 물성, 오일은 저온영역의 물성을 개선하는데 사용된다. 이 중 폴 리머에 관한 연구는 활발히 이루어지고 있는 반면 아스팔트에 사용하는 오일에 관한 연구는 상대적으로 연 구가 부족한 실정이다. 따라서 오일의 사용으로 인한 아스팔트의 물성 변화에 관한 실험적인 검토가 필요 하다고 판단된다.
        15.
        2024.10 구독 인증기관·개인회원 무료
        최근 국내는 이상기후에 따른 극심한 폭염이 지속되고 있으며, 잦은 국지성 호우로 인한 도로 공용수명을 현저히 단축시키고 있다. 국지성 호우 시, 도로 위 유수량의 급격한 증가는 도로 포장체 내 균열, 공극, 신축이음부를 통한 수분 침투를 가속화 한다. 이와 더불 어, 중차량의 교통하중이 반복적으로 지속 될 경우, 포장체 내부의 골재-바인더 간 결합력이 저하되어, 포트홀, 소성변형, 골재비산 등 의 포장 파손을 야기한다. 국내의 일반국도 및 고속도로에서는 아스팔트 노면 위 포트홀, 함몰, 국부적 균열 등의 파손이 발생 시, 일반적으로 파손부를 절삭 · 제거하고, 상온 또는 가열, 중온 아스팔트 혼합물로 유지보수를 수행한다. 하지만 파손부에 임시방편으로 긴급 보수재를 사용할 경우, 지속적인 강우와 차량의 교통하중으로 인해 골재와 바인더 간 결합력을 약화시키고, 신·구 포장 경계면의 부착강도가 저하되어 보수 부위가 쉽게 파손되는 문제가 발생하고 있다. 이는 고속 주행 차량의 안전을 심각하게 위협하는 요인으로 작용한다. 본 연구에서는 방수 · 부착성이 우수한 과립형 구스 매스틱 아스팔트 혼합물(Granular Guss Mastic Asphalt Mixture, 이하 GGM-AM) 을 이용해 소파 보수재료서의 적용성을 검토하기 위해 내구성능에 대한 실내 기초물성실험 결과를 비교 · 분석하였다.
        16.
        2024.10 구독 인증기관·개인회원 무료
        최근 국내는 이상기후에 따른 극심한 폭염이 지속되고 있으며, 잦은 국지성 호우로 인한 도로 공용수명을 현저히 단축시키고 있다. 국지성 호우 시, 도로 위 유수량의 급격한 증가는 도로 포장체 내 균열, 공극, 신축이음부를 통한 수분 침투를 가속화 한다. 이와 더불 어, 중차량의 교통하중이 반복적으로 지속 될 경우, 포장체 내부의 골재-바인더 간 결합력이 저하되어, 포트홀, 소성변형, 골재비산 등 의 포장 파손을 야기한다. 국내의 일반국도 및 고속도로에서는 아스팔트 노면 위 포트홀, 함몰, 국부적 균열 등의 파손이 발생 시, 일반적으로 파손부를 절삭 · 제거하고, 상온 또는 가열, 중온 아스팔트 혼합물로 유지보수를 수행한다. 하지만 파손부에 임시방편으로 긴급 보수재를 사용할 경우, 지속적인 강우와 차량의 교통하중으로 인해 골재와 바인더 간 결합력을 약화시키고, 신·구 포장 경계면의 부착강도가 저하되어 보수 부위가 쉽게 파손되는 문제가 발생하고 있다. 이는 고속 주행 차량의 안전을 심각하게 위협하는 요인으로 작용한다. 본 연구에서는 방수 · 부착성이 우수한 과립형 구스 매스틱 아스팔트 혼합물(Granular Guss Mastic Asphalt Mixture, 이하 GGM-AM) 을 이용해 소파 보수재료서의 적용성을 검토하기 위해 내구성능에 대한 실내 기초물성실험 결과를 비교 · 분석하였다.
        17.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.
        4,200원
        20.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.
        4,000원
        1 2 3 4 5