The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.
Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.
내구연한이 도래한 아스팔트 혼합물은 사용자의 주행성 및 안전성 확보를 위해 주기적인 유지·보수를 실시한다. 과거에는 유지·보수 과정에서 발생된 폐아스팔트 혼합물을 각종 건설현장에서 단순 매립재로서 활용하였으나, 재활용 아스팔트 혼합물의 배합설계 기술이 확립된 이후에는 도로포장재료로서의 재활용되어왔다. 하지만 현재 시공된 재활용 아스팔트 혼합물 또한 내구연한이 다가옴에 따라 노화된 재활용 아스팔트 혼합물의 처리방안 수립이 필요한 시점이다. 본 연구에서는 한번 재활용된 아스팔트 혼합물이 기존의 재활용 배합설계법으로 반복적인 재활용이 가능한지 검증해보고자 하였다. 이를 위해 아스팔트 혼합물의 물성을 결정하는 가장 큰 요인 중 하나인 아스팔트의 물성이 노화 및 재생을 반복할때 어떻게 변하는지를 시험을 통해 분석하였다. 아스팔트 바인더의 노화를 모사하기 위해 공용성등급시험에 사용되는 단기노화 장비(Rolling Thin Film Oven, RTFO)와 장기노화 장비(Pressure Aging Vessel, PAV)을 활용하 였다. 노화된 아스팔트의 회생을 위한 재생첨가제 사용량은 국토부 시공지침의 배합설계법을 참고하였다. 실험결과, 노화된 바인더는 회생시 원바인더에 비해 sin는 감소하였으나, 회생된 바인더 간에는 유사한 결과값을 보였다. 반면 단기노화 시료는 회생이 반복 됨에 따라 sin이 감소한 경향을 보였으며, 장기노화시료는 회생이 반복되어도 sin가 유사한 것으로 확인되었다.
디지털 트윈 기술의 도입은 소재/제품 개발 및 공정의 전주기 과정에서 보다 통합적이며 단절없는 디지털 가상화를 요구하고 있다. 이러한 요구는 미시적 반응, 표면 및 계면 현상을 아우르는 모델링 기법과 거시적 물리 모델 혹은 인공지능 모델의 광범위한 적용을 필요로 한다. 이는 다양한 환경조건에서 소재의 물성 데이터베이스와 미시적 현상 모사가 필요함을 의미하며, 분자동역학 시뮬레이션이 이를 달성하기 위하여 유용하게 활용될 수 있다. 본 논문에서는 평형 및 비평형 분자 동역학 시뮬레이션 방법을 활용한 물성 계산 방법을 개괄하고, 열 및 기계적 물성등 주요 물성 계산 사례들을 검토하여 제시하였다. 본 논문은 분자 동역학 시뮬레이션을 활용한 물성 계산 프레임 워크 개발과 보다 정확하며 신뢰도 높은 계산 수행에 통찰을 제공할 것으로 기대 된다.
In recent automobile development, vehicle weight reduction has become a very important goal. Seat weight reduction is a large portion of vehicle weight reduction. In this study, a specimen tensile tests were conducted on the Almag material, which is an alloy of aluminum and magnesium, and also conducted on SAFH440, SAFH 590, SAFC780, and SAFH980, which are mild steel materials used in the seat frame. The tensile specimen tests were carried out in two speed; 2mm/s and 4mm/s, and the obtained stress to strain curve was converted to the analysis material card of true stress to true strain curve to be used in the seat structural analysis. The constructed analysis material card was used in the specimen tensile finite element analysis, and the analysis result was able to obtain the stress to strain curve similar to the test result.
PURPOSES : In this study, an empirical approach was established to estimate the parameters of the resilient modulus based on various geotechnical properties of subgrade soils. METHODS : Multiple regression analyses were performed to analyze the relationship between resilient modulus (k1) and deformation. The most important factors are the #200 sieve passing ratio, moisture content, and dry unit weight of the soil. The applicability of this approach was verified using selected field data and the literature. RESULTS : The correlation between the results predicted using the prediction equation of the model constant (k1) and the actual k1-value was high. The applicability of the prediction equation was considered high owing to its high suitability with the existing data. The range of values obtained using the constant prediction equation of the proposed model was also judged to be reasonable. In the comparison of the CBR value of the subgrade material of the actual design section and the predicted elastic modulus (k1), almost no relationship was observed between the CBR and the model coefficient (k1). Thus, the estimation of the elastic modulus through CBR is likely to contain errors. CONCLUSIONS : Based on these results, the parameters of the universal model can be predicted using the stress-dependent modulus model proposed in this study.
In this study, we designed and manufactured a large angular contact ball bearing (LACBB) with low deformation using JIS-SUJ2 steel and analyzed changes in its structural characteristics and chemical composition upon heat treatment. The bearing was produced by hot forging and heat treatment including a quenching and tempering (Q/T) process, and its properties were analyzed using 4 mm thick specimens. A difference in the size distribution of the carbide in the outer and inner parts of the bearing was observed and it was confirmed that large and non-uniform carbide was distributed in the inner part of the bearing. After heat treatment, the hardness value of the outer part increased from 13.4 HRC to 61 HRC and the inner part increased from 8.0 HRC to 59.7 HRC. As a result of X-ray diffraction (XRD) measurements, the volume fraction of the retained austenite contained in the outer part was calculated to be 3.5~4.8 % and the inner part was calculated to be 3.6~5.0 %. The surface chemical composition and the content of chemical bonds were quantified through X-ray photoelectron spectroscopy (XPS), and a decrease in C=C bonds and an increase in Fe-C bonds were confirmed.
Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3) O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNNBNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNNbased ceramic capacitors with enhanced energy storage capabilities through doping strategies.
PURPOSES : In this study, the basis for improving the maintenance method of road pavement in Jeju Island, where deterioration is accelerating, was presented through field construction and analysis of various combinations of maintenance methods. METHODS : Construction was performed on Jeju Island's Aejo Road, which has high traffic and frequent early damage, using various asphalt mixtures mainly applied in Jeju Island, with different maintenance cross-sections depending on the level of repair. The quality and performance of the asphalt mixture collected during construction were evaluated, and MEPDG was used to analyze the service life according to the type and maintenance level of the mixture. RESULTS : While the mixture for the surface layer satisfied the quality standards and had excellent rutting and moisture resistance performance, the asphalt mixture for the intermediate and base layer did not satisfy the quality standards such as air voids, so it was judged that quality control was necessary during production. The section repaired to the base layer was found to be advantageous for the integrated behavior of the pavement and had the best structural integrity. As a result of predicting the service life, the estimated life of the section where only the surface layer was repaired was analyzed to be approximately 7 years, the section where the intermediate layer was repaired was 14.5 years, and the section where the entire section up to the base layer was repaired was analyzed to be 18 years. CONCLUSIONS : In Jeju Island, where deterioration is accelerating, it was analyzed that when establishing a maintenance plan, it is necessary to consider repairing the middle and base floors in order to secure the designed life of 10 years.
PURPOSES : Experimental findings pertaining to the mechanical properties and microstructures of calcium sulfo-aluminate (CSA) cement and amorphous calcium aluminate (ACA) cement based-repair mortars incorporated with anhydrite gypsum (AG) are described herein. METHODS : To prepare the mortars, the CSA or ACA as binders were adopted and the ratio of water–binder was fixed at 0.57. For comparison, mortar made of Type I ordinary Portland cement (OPC) was prepared. The fluidity, setting time, compressive and bond strengths and absorption of the mortars were measured at predetermined periods. In addition, the microstructures of paste samples using OPC, CSA or ACA were visually examined through SEM observation. RESULTS : The ACA-based mortars showed the increases in the fluidity, and the acceleration of the setting time. Furthermore, the ACAbased binder effectively enhanced the compressive and bond strengths of the mortars owing to amount of formation of C2AH8 hydrates. Meanwhile, the mortar with ACA showed an excellence absorption. CONCLUSIONS : Comparing with those of CSA-based mortars, the mechanical properties of ACA based-mortars were more remarkable. However, further studies regarding the durability of repair mortars using aluminate-based binders must be conducted to obtain the optimal mixture.
The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.