빠르게 발전하는 이미지 인식 기술에도 불구하고 표 형식의 문서와 수기로 작성된 문서를 완벽하게 디지털화하기에는 아직 어려움이 따른다. 본 연구는 표 형식의 수기 문서인 선박 항해일지를 작성하는 데에 사용되는 규칙을 이용하여 보정 작업을 수행함으로 써 OCR 결과물의 정확도를 향상시키고자 한다. 이를 통해 OCR 프로그램을 통하여 추출된 항해일지 데이터의 정확성과 신뢰성을 높일 것 으로 기대된다. 본 연구는 목포해양대학교 실습선 새누리호의 2023년에 항해한 57일간의 항해일지 데이터를 대상으로 OCR 프로그램 인 식 후 발생한 오류를 보정하여 그 정확도를 개선하고자 하였다. 이 모델은 항해일지 기재 시 고려되는 몇 가지 규칙을 활용하여 오류를 식별한 후, 식별된 오류를 보정하는 방식으로 구성하였다. 모델을 활용하여 오류를 보정 후, 그 효과를 평가하고자 보정 전과 후의 데이터 를 항차별로 구분한 후, 같은 항차의 같은 변수끼리 비교하였다. 본 모델을 활용하여 실제 셀 오류율은 약 11.8% 중 약 10.6%의 오류를 식 별하였고, 123개의 오류 중 56개를 개선하였다. 본 연구는 항해일지 중 항해정보를 기입하는 Dist.Run부터 Stand Course까지의 정보만을 대 상으로 수행하였다는 한계점이 있으므로, 추후 항해정보 뿐만 아니라 기상정보 등 항해일지의 더 많은 정보를 보정하기 위한 연구를 진 행할 예정이다.
4차 산업혁명의 도래로 인한 기술혁신은 자율운항선박을 중심으로 해상 운송분야까지 활발한 발전을 불러왔다. 특히, 현재의 선원이 직접 운항하는 방식인 유인선박 사이에서 운항하게 될 자율운항선박은 자율도에 따라 원격제어를 통해 운항을 수행하며, 육상에 서 이를 제어할 원격운항자에 대한 관심 또한 늘어나고 있다. 하지만 아직 원격운항자가 개입이 필요한 상황이 동시에 발생하는 등을 고 려한 원격운항자 최소 인력 요구사항에 대한 연구는 부족한 상황이다. 본 연구는 특정 해역 구간의 누적된 항적데이터를 활용하여 선박 간에 발생할 수 있는 조우상황에서 원격운항자의 개입이 필요한 상황을 정의하고, 해당 구간을 특정 규모의 자율운항선박 선대로 운항하 였을 때, 원격운항자의 개입이 동시에 필요한 상황이 얼마나 발생하는지를 시뮬레이션을 통해 확인하였다. 연구의 결과는 향후 실제 자율 운항선박 선대를 운행할 원격운항센터의 원격운항자의 적정인력 배치 등의 계획 또는 정책 수립에 활용될 기초 자료로 활용될 것으로 기 대한다.
해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관 제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모 델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에 서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였 고, 전문가 평가를 통해 식별 결과를 검증하였다.
본 연구에서는 부산신항에서 스크러버를 장착한 선박이 세정수를 배출하였을 때 인근 해역에 미치는 영향을 검토하기 위해 확산예측을 수행하였다. 세정수에 포함된 용존무기탄소(DIC)의 농도를 통제한 채로 세정수의 pH 조건별로 해역에 미치는 영향을 대조기 와 소조기로 나누어 평가하였다. 선박 1대에서 24시간 동안 세정수를 배출할 때, pH가 최대 0.076, 0.083 감소하였다. DIC의 경우 0.561mg/L, 0.612mg/L 증가하였다. 부산신항에 수용가능한 선박수인 24대를 전부 가정하여 실험하였을 경우 pH는 0.200, 0.545 감소하였고, DIC는 1.464mg/L, 3.629mg/L 증가하였다. 일반적으로 스크러버가 세정수를 처리하였을 때 pH 6.1인 것을 감안하여 선박 1대에서 pH 6.1인 조건으 로 24시간 동안 세정수를 배출하는 경우 우리나라 연근해의 연간 pH 변화량보다 약 33.7배 더 큰 폭으로 감소하는 것으로 계산되었다. 선 박이 24대일 경우에는 하루이상 표층의 성층화를 유발하고 수심 4m까지 영향을 주는 것으로 예측되었다.
현재의 해양산업의 기술은 스마트 선박 및 자율운항선박 등의 개발과 같은 자율화 및 지능화와 환경규제의 강화에 맞추어 선 박의 운항 효율성을 개선하는 친환경 선박을 위한 기술이 함께 개발되고 있다. 이러한 흐름에 맞추어, 세계각국에서는 선박의 안전운항을 보장하는 선에서 선박운항효율을 극대화하기 위해 다양한 방식으로 노력하고 있다. 본 연구에서는, 현존하는 선박운항효율 개선 기술이 운항 당시의 기상환경, 선박조종 등의 선박운항상태를 실시간으로 반영하지 못하는 문제를 개선하기 위해, 선박에서 수집한 선박운항데 이터를 활용하여 실시간 선박운항효율 분석모델을 개발하고자 한다. 본 연구의 실시간 선박운항효율 분석모델은 연료소모를 기준으로 판 단한 선박운항효율과 당시의 선박운항상태를 감안하여 판단한 선박운항효율을 비교하여, 식별된 선박운항효율의 타당성을 확인할 수 있 는 모델이다. 분석의 주요 내용은 대상선박의 선정과 선박운항데이터의 수집, 선박운항효율 특성과 선박운항상태 특성의 구분, 그리고 이 를 활용한 분류모델의 개발을 포함한다. 연구의 결과는 기존의 선박운항효율과 항해 당시 선박운항상태를 감안한 운항효율을 제시하여 선박 운항자의 의사결정을 지원하여 운항효율을 개선하고자 한다.
전 세계적으로 해상을 마주하고 있는 여러 국가들은 기존의 전력 생산방식의 단점을 극복하고 해상풍력 개발을 통한 친환경에 너지자원을 활용하고 있다. 해상은 넓은 해역에 대규모 풍력단지를 개발할 수 있는 장점이 있으나 해양구조물의 설치로 인해 선박의 안 전운항이 위협받고 있다. 이에 따라, 선박 통항로와 해상풍력단지 간 상호 미치는 영향에 대해 분석하여 선박이 안전하게 운항할 수 있도 록 PIANC에서는 표준 Guideline을 제시하였다. 그럼에도 불구하고, 표준 Guideline은 모든상황에서 동일한 이격거리를 산정하였다. 따라서 본 연구에서는 선회성능, 조우상태, 환경외력, 해상밀집도, 해상풍력발전기, 항로형태 등을 요소로 반영한 선박 통항로와 해상풍력단지 간 최적의 이격거리 산정 모델을 개발하였다. 개발된 모델 검증을 위한 시뮬레이션 결과, 운항 준비상태에 따른 입지 특성별 선회성능 크기 는 산정 모델에서 제시한 크기와 유사하였다.
선박과 교각이 충돌하면 생명과 안전에 큰 위협이 될 수 있다. 따라서 선박-교각 충돌력 영향 인자를 식별하고 다양한 충돌 조 건에서의 충돌력에 대한 연구의 필요성이 있다. 본 논문에서는 선박-교각 충돌의 유한요소 모델을 설정하고, 수치 시뮬레이션을 통해 선 적상태, 운항속도, 충돌 각도의 세 가지 입력조건을 조합하여 50가지 케이스에서의 선박-교각 최대 충돌력을 계산하였다. 계산된 유한요 소해석 결과를 사용하여 신경망 추정 모델을 학습하고 최대 충돌력을 추정함으로써 빠른 시간에 최대 충돌력을 추정하는 프로세스를 제 안하였다. 신경망 예측 모델은 가장 기초적인 역전파 신경망과 시간정보를 고려할 수 있는 순환신경망인 Elman 신경망 2가지 모델을 사 용하였다. 10가지 케이스의 테스트 데이터로 시험한 결과 Elman 신경망을 사용했을 경우에 평균상대오차가 4.566%로 역전파 신경망보다 나은 최대 충돌력 추정이 가능함을 확인하였고 8가지 케이스에서 5%이하의 상대오차를 보여 주었다. 본 신경망을 이용한 최대 충돌력 추 정법은 유한요소해석을 수행하지 않아도 되므로 계산 시간이 짧아 선박 항해 중 충돌을 회피할 수 없는 경우 피해를 최소화하는 의사결 정의 기초 방법으로 사용할 수 있다.
본 연구는 충돌 사고 중에서 정박지에서 대기하고 있는 선박과 이 정박지를 통항하는 선박 간 충돌사고가 자주 발생함에 따라, 정박선 사이를 통항하는 선박의 충돌위험을 예측할 수 있는 모델을 개발하기 위한 기초 연구로 통항 선박의 안전 영역을 도출하는 것이 목적이다. 이를 위해 우리나라 최대 항만인 부산항 남외항 정박지를 대상 해역으로 선정하고 정박선이 가장 많이 대기한 기간 VTS(Vessel Traffic Service) 항적 자료를 추출하여 분석하였다. 정박선 사이를 통항하는 선박의 길이(L)를 기준으로 정박선과 어느 정도의 안전한 거리 (D)를 두고 통과하는지를 알기 위하여 통항 선박의 방위별 D/L 비를 구하였다. D/L 비 분포의 평균 domain을 기준으로 기존 선박 domain 범위 안으로 정박선이 존재할 비율을 분석하여 VTS 관제사의 위험 정도를 반영한 domain을 도출하였다. 추후 연구로는 정박선 사이의 최소 안전거리인 Domain-watch와 정박지 통항 선박의 안전 domain을 활용한 정박지 통항 선박의 충돌위험도 평가 및 분석을 하고, 이를 통해 VTS가 정박지를 좀 더 효율적이고 안전하게 관리하기 위한 모델을 개발하고자 한다.
다양한 산업에서 강조되고 있는 정비의 중요성은 각 분야에 다양한 정비전략을 적용하도록 만들었다. 해양산업 역시 그에 따른 정비전략의 변화가 있었으나 타 산업 대비 그 속도가 느려 실제 적용이 되지 않은 채 과거 시행되고 있던 방식을 유지하는 경우가 많다. 특히 선박은 기존에 행해왔던 방식의 정비전략을 사용하고 있는 편이며 해상의 조건에서 선박은 새로운 정비전략의 개발을 필요로 하고있다. 이에 선박예지정비모델은 기기의 정비가 필요한 시점을 예지하여 조치할 수 있는 정비전략으로서 선박이 항해 중에 처할 수 있는 정비 관련 위험요소들을 줄여 주는 모델이다. 본 연구는 선박예지정비모델의 개발을 위한 연구 중의 하나로서, LNG선박 입거사양서의 텍스트 데이터 분석을 통한 결과를 원문의 내용을 바탕으로 해석해보았다. 공통된 정비항목 조합을 도출하여 선박 내 다른 기기들 사이에 작용하고 있는 상호연관성을 발견하고 이를 앞으로 개발될 선박예지정비모델에 적용하고자 한다.
해양 운송 산업은 특성상 항공 및 철도 등의 다른 운송 산업보다 비교적 늦게 신기술이 적용되는 산업이다. 현재 대부분의 선박은 기계장치 및 시스템에 문제가 발생하거나 운용 시간 기반으로 정비를 하는 사후 정비(Corrective Maintenance, CM)와 예방 정비 (Preventive Maintenance, PM)에 속하는 시간 기반 정비(TBM, Time Based Maintenance)가 적용되고 있다. 그러나 높은 유지보수 비용이 요구되고, 육상의 즉각적인 지원이 어려우며, 선박이 멈추면 즉시 위험에 노출되는 해양 환경에서 운영되는 선박에서 과도한 단순 정비로 인한 인력과 비용 낭비, 예측되지 못한 고장 및 결함으로 유발되는 사고 등으로 인해 운용 효율화 측면에서 기존 정비법에 대한 한계점이 문제시 되고 있다. 예지 정비(Predictive Maintenance, PdM)는 진보된 기술로 기계의 상태 및 성능을 모니터링하여 고장시기를 예측하여 정비하는 방법으로 핵심 기계장치가 항상 최상의 작동 상태를 효율적으로 유지할 수 있도록 한다. 본 논문은 해양 환경에서 PdM의 적용성에 중점을 둔 해양 예지 정비(MPdM, Maritime Predictive Maintenance)에 대해 고안하였으며, 제시된 MPdM은 지리적 고립과 극한 해양 상황 등 해양 운송 산업의 특수한 환경을 고려하여 설계되었다. 본 논문은 선진 미래 해양 운송을 가능하게 하는 MPdM이라는 개념과 그 필요성을 제안한다.
본 연구의 목적은 Neural Network Regression 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고, 2000년 1월부터 2020년 8 월까지의 해당 데이터를 확보하였다. 변수의 안정성을 판단하기 위해 다중 공선성 검사를 수행하여 최종적으로 6개의 독립변수와 1개의 종속변수를 선정하고 연구 구조를 설계하였다. 이를 바탕으로 Linear Regression, Neural Network Regression, Random Forest Algorithm을 활용하여 총 9개의 시뮬레이션 모델을 설계하였다. 또한 각 모델간의 비교검증을 통해 평가결과의 정확성을 제고시켰다. 평가 결과, VLCC실제값과의 비교를 통해 2층으로 구성된 Hidden Layer의 Neural Network Regression 모델이 가장 정확도가 높은 것으로 나타났다. 본 연구의 시사점은 첫째, 기존 정형화된 평가기법에서 벗어나 기계학습기반 모델을 선박가치평가에 적용하였다는 점이다. 둘째, 해운시 장 변화요인을 동태적 관점에서 분석하고 예측함으로써 연구결과의 객관성을 제고시켰다고 할 수 있다.
본 연구에서는 선박 전원용 연료전지 시스템 모델을 개발하여 순수한 산소를 공급하여 진행한 실험 결과의 비교를 통하여 연료전지 시스템 모델을 검증하였다. 검증된 모델을 활용하여 공기 압축기를 사용하여 공기를 공급할 경우에 대하여 산소를 공급한 경우와의 연료전지 출력 특성을 비교 검토하였다. 또한, 연료전지 시스템의 열물성치 변화가 스택의 출력에 어떠한 영향을 미치는지에 관하여 검토하였다. 그 결과 본 연구의 실험 범위에서 캐소드 공급 가스로 순수한 산소를 공급한 경우의 모델링을 통한 계산 결과와 실험 결과는 전 부하 영역에서 거의 동일한 전압 및 출력을 얻을 수 있었다. 560 A의 일정한 부하에서 캐소드 공급용 산소를 대신하여 공기를 공급한 경우 각각의 스택 전압은 약 14 V, 스택 출력은 약 8 kW, 스택 효율은 약 3 % 및 전체 시스템 효율은 8 % 정도 낮아짐을 알 수 있었다. 본 연구에서 검토한 열물성치 중에서 스택에 대한 냉각수의 열전달 계수가 스택의 출력에 가장 큰 영향을 미침을 알 수 있었다.