본 연구는 해양에서 선박 운항 시 발생할 수 있는 항행장애물, 특히 부유물과의 충돌 위험성을 예측하기 위해 몬테카를로 시뮬 레이션을 적용한 항행안전 충돌 확률 모델을 개발하는 데 중점을 두고 있다. 항행장애물은 해양에서 선박의 운항을 방해하거나 위험을 초 래할 수 있는 물체로, 선박 사고의 주요 원인 중 하나이다. 연구는 부유물 감김 사고와 관련된 최근 5년간의 해양사고통계 정보와 7년간 사 고 데이터를 분석하여 사고 발생 패턴을 파악하고, 이를 기반으로 위험성 평가 방법론을 검토하였다. 몬테카를로 시뮬레이션을 통해 임의 의 제한된 해상 공간 내에서 표류하는 부유물과 이동 중인 선박이 접촉할 확률을 도출하였으며, 다양한 변수(부유물의 크기, 개수, 속도, 이 동하는 선박의 개수, 선박의 통항 패턴 등)가 충돌 확률에 미치는 영향을 분석하였다. 연구 결과, 표류하는 장애물의 속도보다는 장애물의 크기와 이동하는 선박의 개수에 따라 충돌 확률이 영향을 받음을 확인할 수 있었다. 이 연구는 해양과 선박 데이터 기반 실행 가능한 모델 을 제안하며, 이를 통해 선박 운항의 안전성을 높이고, 사고 예방을 위한 효과적인 관리 방안을 제공하는 것을 목표로 하고 있다.
해상 운송 시스템에 사이버 위협이 증가함에 따라, 안전한 운항을 보장하기 위한 사이버 복원력의 필요성이 부각되고 있다. 특 히, 자율운항선박과 같은 고도의 기술 융합이 요구되는 스마트선박은 기존보다 더 광범위한 사이버 공격 표면을 가지게 되어 이에 대한 리스크 관리가 필수적이다. 본 연구에서는 스마트선박의 사이버 복원력을 평가하기 위해 국제 표준인 IACS UR E26, E27, IEC 62443, NIST SP 800-160을 분석하고, 이를 통해 스마트선박의 선종과 자율화 수준에 따른 사이버 리스크 평가 및 각각의 리스크에 맞는 복원력 모델 개념을 설계하였다. 특히, 선박의 자율화 수준이 높아질수록 사이버 리스크가 커지므로 이를 반영한 맞춤형 대응 전략을 도출하고 스마트 선박의 사이버 복원력 향상을 위한 성숙도 모델을 제안했다.
빠르게 발전하는 이미지 인식 기술에도 불구하고 표 형식의 문서와 수기로 작성된 문서를 완벽하게 디지털화하기에는 아직 어려움이 따른다. 본 연구는 표 형식의 수기 문서인 선박 항해일지를 작성하는 데에 사용되는 규칙을 이용하여 보정 작업을 수행함으로 써 OCR 결과물의 정확도를 향상시키고자 한다. 이를 통해 OCR 프로그램을 통하여 추출된 항해일지 데이터의 정확성과 신뢰성을 높일 것 으로 기대된다. 본 연구는 목포해양대학교 실습선 새누리호의 2023년에 항해한 57일간의 항해일지 데이터를 대상으로 OCR 프로그램 인 식 후 발생한 오류를 보정하여 그 정확도를 개선하고자 하였다. 이 모델은 항해일지 기재 시 고려되는 몇 가지 규칙을 활용하여 오류를 식별한 후, 식별된 오류를 보정하는 방식으로 구성하였다. 모델을 활용하여 오류를 보정 후, 그 효과를 평가하고자 보정 전과 후의 데이터 를 항차별로 구분한 후, 같은 항차의 같은 변수끼리 비교하였다. 본 모델을 활용하여 실제 셀 오류율은 약 11.8% 중 약 10.6%의 오류를 식 별하였고, 123개의 오류 중 56개를 개선하였다. 본 연구는 항해일지 중 항해정보를 기입하는 Dist.Run부터 Stand Course까지의 정보만을 대 상으로 수행하였다는 한계점이 있으므로, 추후 항해정보 뿐만 아니라 기상정보 등 항해일지의 더 많은 정보를 보정하기 위한 연구를 진 행할 예정이다.
4차 산업혁명의 도래로 인한 기술혁신은 자율운항선박을 중심으로 해상 운송분야까지 활발한 발전을 불러왔다. 특히, 현재의 선원이 직접 운항하는 방식인 유인선박 사이에서 운항하게 될 자율운항선박은 자율도에 따라 원격제어를 통해 운항을 수행하며, 육상에 서 이를 제어할 원격운항자에 대한 관심 또한 늘어나고 있다. 하지만 아직 원격운항자가 개입이 필요한 상황이 동시에 발생하는 등을 고 려한 원격운항자 최소 인력 요구사항에 대한 연구는 부족한 상황이다. 본 연구는 특정 해역 구간의 누적된 항적데이터를 활용하여 선박 간에 발생할 수 있는 조우상황에서 원격운항자의 개입이 필요한 상황을 정의하고, 해당 구간을 특정 규모의 자율운항선박 선대로 운항하 였을 때, 원격운항자의 개입이 동시에 필요한 상황이 얼마나 발생하는지를 시뮬레이션을 통해 확인하였다. 연구의 결과는 향후 실제 자율 운항선박 선대를 운행할 원격운항센터의 원격운항자의 적정인력 배치 등의 계획 또는 정책 수립에 활용될 기초 자료로 활용될 것으로 기 대한다.
해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관 제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모 델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에 서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였 고, 전문가 평가를 통해 식별 결과를 검증하였다.
본 연구에서는 부산신항에서 스크러버를 장착한 선박이 세정수를 배출하였을 때 인근 해역에 미치는 영향을 검토하기 위해 확산예측을 수행하였다. 세정수에 포함된 용존무기탄소(DIC)의 농도를 통제한 채로 세정수의 pH 조건별로 해역에 미치는 영향을 대조기 와 소조기로 나누어 평가하였다. 선박 1대에서 24시간 동안 세정수를 배출할 때, pH가 최대 0.076, 0.083 감소하였다. DIC의 경우 0.561mg/L, 0.612mg/L 증가하였다. 부산신항에 수용가능한 선박수인 24대를 전부 가정하여 실험하였을 경우 pH는 0.200, 0.545 감소하였고, DIC는 1.464mg/L, 3.629mg/L 증가하였다. 일반적으로 스크러버가 세정수를 처리하였을 때 pH 6.1인 것을 감안하여 선박 1대에서 pH 6.1인 조건으 로 24시간 동안 세정수를 배출하는 경우 우리나라 연근해의 연간 pH 변화량보다 약 33.7배 더 큰 폭으로 감소하는 것으로 계산되었다. 선 박이 24대일 경우에는 하루이상 표층의 성층화를 유발하고 수심 4m까지 영향을 주는 것으로 예측되었다.
현재의 해양산업의 기술은 스마트 선박 및 자율운항선박 등의 개발과 같은 자율화 및 지능화와 환경규제의 강화에 맞추어 선 박의 운항 효율성을 개선하는 친환경 선박을 위한 기술이 함께 개발되고 있다. 이러한 흐름에 맞추어, 세계각국에서는 선박의 안전운항을 보장하는 선에서 선박운항효율을 극대화하기 위해 다양한 방식으로 노력하고 있다. 본 연구에서는, 현존하는 선박운항효율 개선 기술이 운항 당시의 기상환경, 선박조종 등의 선박운항상태를 실시간으로 반영하지 못하는 문제를 개선하기 위해, 선박에서 수집한 선박운항데 이터를 활용하여 실시간 선박운항효율 분석모델을 개발하고자 한다. 본 연구의 실시간 선박운항효율 분석모델은 연료소모를 기준으로 판 단한 선박운항효율과 당시의 선박운항상태를 감안하여 판단한 선박운항효율을 비교하여, 식별된 선박운항효율의 타당성을 확인할 수 있 는 모델이다. 분석의 주요 내용은 대상선박의 선정과 선박운항데이터의 수집, 선박운항효율 특성과 선박운항상태 특성의 구분, 그리고 이 를 활용한 분류모델의 개발을 포함한다. 연구의 결과는 기존의 선박운항효율과 항해 당시 선박운항상태를 감안한 운항효율을 제시하여 선박 운항자의 의사결정을 지원하여 운항효율을 개선하고자 한다.
전 세계적으로 해상을 마주하고 있는 여러 국가들은 기존의 전력 생산방식의 단점을 극복하고 해상풍력 개발을 통한 친환경에 너지자원을 활용하고 있다. 해상은 넓은 해역에 대규모 풍력단지를 개발할 수 있는 장점이 있으나 해양구조물의 설치로 인해 선박의 안 전운항이 위협받고 있다. 이에 따라, 선박 통항로와 해상풍력단지 간 상호 미치는 영향에 대해 분석하여 선박이 안전하게 운항할 수 있도 록 PIANC에서는 표준 Guideline을 제시하였다. 그럼에도 불구하고, 표준 Guideline은 모든상황에서 동일한 이격거리를 산정하였다. 따라서 본 연구에서는 선회성능, 조우상태, 환경외력, 해상밀집도, 해상풍력발전기, 항로형태 등을 요소로 반영한 선박 통항로와 해상풍력단지 간 최적의 이격거리 산정 모델을 개발하였다. 개발된 모델 검증을 위한 시뮬레이션 결과, 운항 준비상태에 따른 입지 특성별 선회성능 크기 는 산정 모델에서 제시한 크기와 유사하였다.
선박과 교각이 충돌하면 생명과 안전에 큰 위협이 될 수 있다. 따라서 선박-교각 충돌력 영향 인자를 식별하고 다양한 충돌 조 건에서의 충돌력에 대한 연구의 필요성이 있다. 본 논문에서는 선박-교각 충돌의 유한요소 모델을 설정하고, 수치 시뮬레이션을 통해 선 적상태, 운항속도, 충돌 각도의 세 가지 입력조건을 조합하여 50가지 케이스에서의 선박-교각 최대 충돌력을 계산하였다. 계산된 유한요 소해석 결과를 사용하여 신경망 추정 모델을 학습하고 최대 충돌력을 추정함으로써 빠른 시간에 최대 충돌력을 추정하는 프로세스를 제 안하였다. 신경망 예측 모델은 가장 기초적인 역전파 신경망과 시간정보를 고려할 수 있는 순환신경망인 Elman 신경망 2가지 모델을 사 용하였다. 10가지 케이스의 테스트 데이터로 시험한 결과 Elman 신경망을 사용했을 경우에 평균상대오차가 4.566%로 역전파 신경망보다 나은 최대 충돌력 추정이 가능함을 확인하였고 8가지 케이스에서 5%이하의 상대오차를 보여 주었다. 본 신경망을 이용한 최대 충돌력 추 정법은 유한요소해석을 수행하지 않아도 되므로 계산 시간이 짧아 선박 항해 중 충돌을 회피할 수 없는 경우 피해를 최소화하는 의사결 정의 기초 방법으로 사용할 수 있다.
본 연구는 충돌 사고 중에서 정박지에서 대기하고 있는 선박과 이 정박지를 통항하는 선박 간 충돌사고가 자주 발생함에 따라, 정박선 사이를 통항하는 선박의 충돌위험을 예측할 수 있는 모델을 개발하기 위한 기초 연구로 통항 선박의 안전 영역을 도출하는 것이 목적이다. 이를 위해 우리나라 최대 항만인 부산항 남외항 정박지를 대상 해역으로 선정하고 정박선이 가장 많이 대기한 기간 VTS(Vessel Traffic Service) 항적 자료를 추출하여 분석하였다. 정박선 사이를 통항하는 선박의 길이(L)를 기준으로 정박선과 어느 정도의 안전한 거리 (D)를 두고 통과하는지를 알기 위하여 통항 선박의 방위별 D/L 비를 구하였다. D/L 비 분포의 평균 domain을 기준으로 기존 선박 domain 범위 안으로 정박선이 존재할 비율을 분석하여 VTS 관제사의 위험 정도를 반영한 domain을 도출하였다. 추후 연구로는 정박선 사이의 최소 안전거리인 Domain-watch와 정박지 통항 선박의 안전 domain을 활용한 정박지 통항 선박의 충돌위험도 평가 및 분석을 하고, 이를 통해 VTS가 정박지를 좀 더 효율적이고 안전하게 관리하기 위한 모델을 개발하고자 한다.