검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 194

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen fertilizers are generally known to be of great help in improving crop yields, but excessive nitrogen fertilizer usage can not only destroy the environment but also negatively affect crop growth. This study aims to develop a decision-making system for optimal nitrogen fertilizer use for efficient production of Chinese cabbage (Brassica rapa), one of the major vegetables. The proposed system has the functions of detecting farmland based on satellite images, predicting cabbage yields and greenhouse gas (e.g., nitrous oxide) emissions according to nitrogen fertilizer use, and making decisions using the prediction results. To develop the proposed system, a generalized prediction model is developed using experimental data collected from South Korea, Egypt, India, Canada, Lithuania, and China, and the effectiveness of the proposed system is validated through experiments. As a result, the proposed system will enable farmers to conduct eco-friendly agricultural activities through appropriate nitrogen fertilizer use while stably maximizing productivity of Chinese cabbages.
        4,000원
        6.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도라지는 한국, 중국 그리고 일본에서 주로 재배되는 약용 작물이다. 도라지의 뿌리는 사포닌의 함량이 높고 기관지 보 호에 효과가 좋아 약재로 이용이 많이 될 뿐만 아니라 가공식 품, 화장품의 원료로 많이 이용되고 있다. 하지만 도라지의 대 량 생산을 위한 폐쇄형 식물 생산 시스템 내 적정 광 환경에 대 한 기초 데이터가 전무한 실정이다. 본 연구는 도라지의 광도 와 광주기를 구명하기 위해 수행되었다. 도라지는 온도 24.9 ± 0.9℃, 상대습도 53.7 ± 10.9%의 폐쇄형 식물 생산 시스템에 서 48일간 육묘하였다. 광도는 100, 150 및 200 ± 10μmol·m-2·s-1 그리고 광주기는 10/14, 12/12, 14/10h(명기/암기)로 처리하 였다. 가장 높은 광도인 200μmol·m-2·s-1에서 지상부 생육이 가장 우수하였고 12/12와 14/10h 사이에는 유의적인 차이가 나타나지 않았다. 200μmol·m-2·s-1에서 광주기 12/12h의 절 간장은 14/10h보다 유의적으로 짧았다. 200μmol·m-2·s-1에 서 지하부 생육의 경우 광주기 12/12h보다 14/10h의 생육이 우수하였다. 결론적으로, 200μmol·m-2·s-1, 12/12h는 도라지 공정 육묘의 광 환경으로 적합할 것으로 판단된다.
        4,000원
        8.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for automated diagnostic facilities has increased due to the rise in high-risk infectious diseases. However, small and medium-sized centers struggle to implement full automation because of limited resources. An integrated molecular diagnostics automation system addresses this issue by integrating small-scale automated facilities for each diagnostic process. Nonetheless, determining the optimal number of facilities and human resources remains challenging. This study proposes a methodology combining discrete event simulation and a genetic algorithm to optimize job-shop facility layout in the integrated molecular diagnostics automation system. A discrete event simulation model incorporates the number of facilities, processing times, and batch sizes for each step of the molecular diagnostics process. Genetic algorithm operations, such as tournament, crossover, and mutation, are applied to derive the optimal strategy for facility layout. The proposed methodology derives optimal facility layouts for various scenarios, minimizing costs while achieving the target production volume. This methodology can serve as a decision support tool when introducing job-shop production in the integrated molecular diagnostics automation system
        4,000원
        9.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the aerodynamic and structural characteristics of an H-Darrieus vertical-axis wind turbine (VAWT) under varying inlet velocities using transient analysis. The k-ε turbulence model and six-DOF were applied to simulate urban environments in the flow analysis, while the structural analysis considered blade momentum of inertia and RPM conditions. The numerical results showed that the drag and lift forces increased by 60% and 53% respectively from the nominal wind speed to the cut-off wind speed conditions. Structural analysis indicated that the maximum Von-Mises stress in the blade did not exceed the yield strength of 69 MPa of PC-ABS, ensuring structural stability. However, the connecting rod exceeded the yield strength of SPCC 270 MPa, suggesting potential failure due to repeated rotational loads. This study confirms that materials with a yield strength of more than 1,100 MPa required for connecting rods to ensure reliable operation at high wind speed. These findings provide important insights for the design of robust VAWTs suitable for extreme environments.
        4,000원
        10.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to optimize the SDC (Spinning Dust Collector) system in amphibious assault vehicle engines through numerical analysis of dust and moisture particle separation efficiency using CFD-DPM. Focusing on an axial cyclone structure, the research evaluates separation efficiency across various particle sizes and flow conditions. The results demonstrate that vortices generated by cyclone blades play a critical role in influencing particle trajectories and improving separation performance. Additionally, the study highlights the significant impact of engine flow conditions and housing design, emphasizing that their careful optimization enhances the system's efficiency in separating dust and water. These findings offer valuable insights into optimizing inlet and outlet flow paths and cyclone housing design, providing a solid foundation for advancing SDC system performance in high-efficiency engines.
        4,200원
        11.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite their historical use, studies on the genetic functions of mushrooms and varietal improvement via biomolecular techniques are limited compared to other organisms. Recent advancements in CRISPR/Cas9 have enabled precise genetic modifications in mushrooms, with RNP-based systems offering high editing efficiency without foreign gene insertion. In this study, we optimized gene-editing conditions for Ganoderma lucidum (Yongji 2) by utilizing RNP/nanoparticle complexes to enhance efficiency. The optimal conditions included a 0.2 M sorbitol buffer (pH 7.0) and a protoplast-to-complex ratio of 10:1. Among eight gRNAs designed for the catA gene, three were identified with high activity, and PEG-mediated transformation resulted in successful gene edits, primarily involving 1 bp deletions. The editing efficiency reached 7–8%, demonstrating that nanoparticle-supported RNP systems are effective for marker-free gene editing in mushrooms. These findings highlight a promising approach for advancing genetic research and varietal improvement in G. lucidum and other mushroom species.
        4,000원
        17.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed an optimized system for complete combustion of smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        1 2 3 4 5