Due to the onset of urbanization worldwide, there is an increasing demand for improving the quality of the urban environment. Odor in wastewater collection systems (WCSs) can interfere with the comfortable and safe living conditions of citizens. Additionally, it can cause economic losses, such as the corrosion of wastewater collection facilities. In this paper, the mechanism of odor generation in WCSs was summarized, and the odor concentrations and sulfide generation rates measured in domestic and foreign WCSs were comprehensively analyzed to review the characteristics of odor emission in WCSs. The complex odor intensity (dilution-tothreshold value) measured in combined domestic sewers ranged from 10 to 10,000, with a median of 100. The odorous compound with the highest contribution to complex odor intensity was hydrogen sulfide, which was the odor most frequently detected at the highest concentrations in most WCSs (its median and mean concentrations were 378.0 ppb and 3,771.2 ppb, respectively). The odor emission properties in the WCSs in Australia and Finland were similar to those of South Korea, with the median and mean concentrations of hydrogen sulfide being 1,927.5 ppb and 12,306.1 ppb, respectively. The sulfide generation rates measured in domestic and foreign WCSs ranged from 0.003 to 0.220 g m–2 h–1. In addition, the key factors affecting sulfide generation were sulfate and organic matter concentrations, pH, temperature, flow rate (retention time), dissolved oxygen concentration, and electron acceptor concentrations other than sulfate. To control odor in WCSs, various methods have been proposed to improve their anaerobic environment. These include sucking outside air into the WCSs and improving their hydraulic conditions, such as changing the slope of sewer pipes to minimize sediment deposition. Additionally, periodically removing sediments, which contain a significant amount of organic matters and sulfate-reducing bacteria, is also a useful method for controlling odor in WCSs. Since the odor compounds that contribute the highest odor intensity–and are the most frequently detected–are sulfur-containing odors such as hydrogen sulfide, the control of sulfides is crucial for controlling odor in WCSs. There are chemical control methods for the mitigation of sulfide in WCSs, including air (oxygen) injection and introducing various chemicals, such as alkalis, nitrates, iron salts, and biocides. However, most of the results of odor control using these methods were from laboratory-scale studies. Therefore, additional field-scale experiments should be conducted in WCSs to evaluate the actual effectiveness of various odor control methods. Through these field studies, the optimal conditions for each method to control odor in WCSs can be derived, and the efficiency and economic feasibility of each method can be verified.
Starfish are creatures that destroy marine ecosystems due to their high reproductive rate and predatory nature. Instead of mass incineration, this study attempted to utilize them as functional adsorbents to control odorous organic compounds. This waste starfishbased adsorbent showed a high aldehyde capture efficiency of 91.1%. The maximum specific surface area of the prepared waste starfish adsorbent was 2.19m2/g, and the adsorption amount was 101.66mg/g. Therefore, it was confirmed that the waste starfish had the ability to perform well as an adsorbent.
An odor is referred to or described as an unpleasant smell that creates a disagreeable atmosphere and may impinge on the quality of life of people. Most of the odors that stimulate the human sense of smell and engender feelings of discomfort and disgust are odors mixed with various chemicals substances. Among designated odor substances, acetaldehyde, propionaldehyde, butyraldehyde, n-valeraldehyde, and iso-valeraldehyde may cause an irritating and sour sensation and give rise to headache, dizziness, vomiting, and unconsciousness. These aldehyde substances are mainly discharged in high concentrations from food chemicals, petrochemicals, and printing industry sources. The odor control technologies applied to prevent odors from aldehydes are absorption, adsorption, as well as biological methods and combustion methods. The threshold concentrations of aldehydes are low so that odors can be easily experienced even at very low concentrations. It is not easy to control aldehydes due to their particular physicochemical properties and because aging and poor management of the odor prevention technology is usually only available. In this study, trends with regard to research efforts on the development of technology that is effective in treating aldehydes were summarized.
The adsorption method that is widely used in the field of odor control generally utilizes activated carbon. However, the development of an economical and efficient adsorbent is required due to the increased use of activated carbon and the high cost of raw materials. Accordingly, the use of waste as a raw material for new adsorbents is attracting attention both in Korea and abroad. In this study, the current status of domestic and overseas waste generation, characteristics of adsorbents, and research trends were investigated, and through this, it was found that a waste-derived adsorbent was an adequate substitute in terms of adsorption capacity and price compared to activated carbon.
Environmental treatment residues become valuable waste byproducts like biomass when an environmental infrastructure necessary for recycling is effectively developed. In this study, an environmentally friendly sewage sludge sorbent was developed in a sewage treatment plant by carefully processing the sewage sludge generated from sewage treatment plants. In order to increase the adsorption efficiency, coffee ground waste was added to the adsorbent as an additive and the adsorbate used in the adsorption experiments was acetaldehyde as organic waste. It could be found from the experiment that the adsorbent of the sewage sludge was adsorbed more easily at the carbonization temperature of 600℃. In addition, adsorption experiments showed that the breakthrough time reached to 85, 110, and 130 minutes at 3:1, 2:2, and 1:3, respectively, depending on the content ratio of the sewage sludge and coffee waste. Therefore, the amount of acetaldehyde adsorption increased with the increase in the amount of coffee grounds in the mixture. It could be also be found that the addition of the coffee grounds as an additive to increase the adsorption capacity of the sewage sludge adsorbent is advantageous for adsorption.
In this study, the odor causing in the under-fired charbroiling restaurant was reported in literature investigation,pilot test and field experimental verification. The charbroiling restaurant causes odor complaints of Neighbors soefficient reduction method is requested. Acetaldehyde, ammonia, sulfur compound and the oil mist of white smokeare found to cause odor from the charbroiling restaurant. Pilot test results show that in the removal efficiency ofodor, Electrostatic Precipitation was 67.4%, absorption was 81.2%, adsorption was 74.2% and the ElectrostaticPrecipitation & Adsorption the hybrid system with 85.7% respectively. In the same condition of the hybrid system(Electrostatic Precipitation & Adsorption), the odor removal efficiency were higher when the design parameterssuch as the discharge voltage and current were high. The process efficiency were higher when as the implanterpole was cylindrical. However, the process efficiency rapidly reduced due to the contamination of the processcomponent or material, as the operating time of the equipment is increased. Therefore, fixed maintenance and repairof the equipment is found to be are very important, for long term operation. Therefore, as the experimental resultof this study, applying hybrid system removed odors caused in under-fired charbroiling restaurant which areunregulated, is more effective device that settle civil complaints and preserve environment.
2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
As a herbal supplement, Dioscorea batatas Decne (DBD) presents potent antioxidant activity and diverse health benefits. In the present study, functions of a 30 kDa glycoprotein isolated from DBD (hereafter, DBD glycoprotein) in the regulation of feed efficiency and fecal malodor in mice were explored. DBD glycoprotein produced protective effect against cytotoxicity induced by the ecotoxicological endocrine-disrupting substance bisphenol A in gastrointestinal epithelial HT-29 cells. To investigate its potential roles in the regulation of feed efficiency and fecal malodor, mice were administered an oral injection of DBD glycoprotein for 2 weeks. Compared with the control values, the weight of internal organs (liver, heart, kidney, and spleen) and levels of glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, and lactic dehydrogenase were not significantly changed during DBD glycoprotein administration for 2 weeks. Interestingly, DBD glycoprotein improved feed efficiency and reduced hydrogen sulfide concentration without altering the ammonia level in mouse feces. Collectively, these results indicate that DBD glycoprotein is a functional agent that exerts gastrointestinal protective effects against ecotoxicological substances, improves feed efficiency, and reduces fecal malodor.