In this study, the structural integrity of the composite rocket motor case of a space launch vehicle was evaluated by conducting compression and bending tests. Two composite rocket motor case specimens with different stacking patterns were prepared for each test, and a dedicated jig was designed and manufactured. The test procedure was developed and applied separately for compression and bending tests. By performing these tests, the composite rocket motor case structural safety was assessed.
The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.
Thick-walled pressure vessel has been autofrettaged in order to improve the fatigue life of the pressure vessel. The compressive tangential residual stress near the bore of the pressure vessel due the autofrettage process is benefical to the fatigue crack initiation and propagation of the pressure vessel. However, a reverse yielding due to the Bauschinger effect during the unloading process in autofrettage causes the reduction of the compressive residual stress near the bore. In order to evaluate the fatigue crack propagation life of the autofrettaged thick-walled pressure vessel, the Bauschinger effects were considered. Stress intensity factors of the crack at the inside surface of the pressure vessel due to operating pressure loading of 707 MPa and autofrettage loading with different levels of overstrain were calculated by using finite element methods, and used for evaluating fatigue crack propagation lives. Fatigue lives of the pressure vessel with the Bauschinger effects resulted in 45% to 67% reductions in fatigue life compared to those of the pressure vessel with ideal residual stress distributions depending on the autofrettage level.
Application of a very high internal pressure on the thick-walled pressure vessel induces beneficial compressive tangential residual stresses near the bore of the pressure vessel after unloading the internal pressure. However, a reverse yielding due to the Bauschinger effect during the unloading process causes the reduction of the compressive residual stress near the bore. In order to evaluate the autofrettage residual stress distributions of the thick-walled pressure vessel, the Bauschinger effects were considered. Magnitudes of the compressive residual stresses at the bore determined by considering the Bauschinger effects decreased by about 25 percent, compared to the case of linear elastic unloading, i.e., without Bauschinger effects. Measured residual stress distributions agreed fairly well with the calculated distributions considering the Bauschinger effects.
In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and 20 oC/s consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ~10 μm, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.
압력용기의 내압은 압력용기 설계의 중요한 인자이며 이를 바탕으로 관련 설계기준 및 구조해석결과에 따라 압력용기의 두께 및 직경과 같은 기하학적 형상이 결정된다. 그러나 압력용기 내부에서 폭굉이 일어날 경우 이 폭굉압력을 적절히 고려 하여 압력용기를 설계할 수 있는 설계기준은 미흡한 실정이다. 일반적으로 폭굉이 발생할 경우, 초기 폭굉압력이 용기 벽면에 도달하여 반사하는 반사압력은 초기압력의 2배 이상이라고 알려진다. 그러나 폭굉압력은 구조물의 고유주기보다도 짧은 시간 안에 최대치에 도달한 후 급격하게 감소하는 경향을 보이며, 이 경우 실제 용기벽면이 받게 되는 압력은 반사압력에 비해 매우 작을 수 있다. 따라서 본 연구에서는 이러한 폭굉의 특성을 고려하여 압력용기가 견뎌야 하는 적절한 등가의 폭굉압 력을 산정하는 방법을 제안함으로써 폭굉을 고려한 효율적인 압력용기 설계기준을 제시하고자 하였다.
In order to investigate the low-cycle fatigue behavior of Inconel 718 alloy used for pressure vessels, the strain-controlled fatigue test was performed in the room and high temperatures of 550°C. High temperature test was done using an electric furnace attached on the hydraulic fatigue test system. Tensile strength and elastic modulus of the Inconel 718 alloy at the temperature of 550°C decreased by 8% and 10%, respectively, compared to those at the room temperature. Subjected to the repeated cyclic loading under the strain-control, the material exhibited cyclic softening behavior with decreasing yield strength at both room and high temperatures. The low-cycle fatigue properties determined in this research could be effectively used for the fatigue life estimation of high temperature components made of Inconel 718 alloy.
최근 국내에서는 월성 1호기 및 고리 1호기를 포함하여 운영 중인 원자력발전소가 노후화함에 따라 원전 해체에 대한 관심 이 많이 증대되고 있다. 이와 관련하여 월성 1호기의 계속운전이 최근 결정되었으며, 고리 1호기의 경우 2017년 6월 영구정 지하기로 결정되었다. 이에 본 논문에서는 상업용 원자로로서는 국내 최초로 해체가 예정된 고리 1호기에 대해, 원자로 압 력용기 자체의 해체로 인해 발생하는 방사성폐기물 최종 처분량을 원자로 압력용기 절단 방법 및 방사성폐기물 처분용기를 고려하여 산정하였다. 처분용기를 고려한 방사성폐기물 처분량을 산정한 결과 원자로 압력용기 몸통 부위보다는 반구 형태 의 헤드 부분을 작게 절단할수록 최종 처분량이 감소하는 것으로 예측되었다. 또한 경주 방폐장의 200 L 및 320 L 드럼 처분 용 처분용기의 경우 무게 제한으로 인해 적재효율이 좋지 못한 것으로 나타났다.
재래식 해수담수화 수평적 압력용기 설계는 후단에 있는 역삼투막에는 농축수에 의해 수질악화 및 생산수저감 등이 동반된다. 이를 해결하기 위해 본 연구에서는 개념적인 중앙 주입식 압력용기가 생산수 단가에 미치는 영향과 역삼투 공정 설계 시 주요 인자들이 성능에 미치는 영향을 조사를 위해 상업화된 역삼 투 프로그램인 ROSA를 이용하여 분석하였다. 그 결과 중앙 주입식 압력용기를 이용할 경우 총괄적인 회수율과 SEC 측면에서 성능이 저하하지만, 막 모듈 당 생산되는 생산수량이 증가하는 것으로 나타났다. 또한 생산수의 수질개선은 2단 설계의 용량 감소로 인하여 건설비 저감으로 연계되는 것으로 조사되었다. 본 연구는 국토교통부 플랜트연구사업의 연구비지원(과제번호 16IFIP-B089908-03)에 의해 수행되었습니다.