In order to overcome the limitations of linear vibration energy harvesters and those using mechanical plucking, magnetic plucking vibration energy harvesters (MVEs) have garnered significant interest. This paper presents parametric studies aimed at proposing design guidelines for MVEs and compares two magnetic force models that describe interactions between two permanent magnets. A mathematical model describing the energy harvester is employed, followed by the introduction of two magnetic force models: an analytic model and an inverse square model. Subsequently, numerical simulations are conducted to investigate dynamic characteristics of MVEs, analyzing results in terms of tip displacement, voltage output, and harvested energy. Parametric studies vary the distance between magnets, the speed of the external magnet, and the beam shape. Results indicate that reducing the distance between magnets enhances energy harvesting effectiveness. An optimal velocity for the external magnet is observed, and studies on beam shape suggest greater energy harvesting when the shape favors deflection.
본 연구는 장미 ‘Bubble Gum’에 대한 수확 후 LED 광 환경 과 살균제 Azoxystrobin 보존용액 처리 시 절화품질에 미치는 영향을 구명하고자 수행되었다. 광은 백색 LED와 유색 LED (red:blue=5:1)로 처리하였고, 보존용액은 수돗물(tap water, TW)과 Azoxystrobin 0.05 mL・L-1를 처리하였다. 백색 LED처 리의 절화수명은 TW, Azoxystrobin처리구 각각 9.6일, 9.7일 로 LED 광과 보존용액 처리 간의 유의차가 없었다. 유색 LED 처리의 절화수명은 TW처리구가 13.6일, Azoxystrobin처리구 가 9.8일로, 유색 LED 처리구가 대조구(백색 LED + TW)에 비해 절화수명을 4일 연장시켰다. 절화수명 종료 증상은 LED 광 조건과 관계없이 Azoxystrobin처리구는 꽃잎 위조와 청변 화 증상을 감소시켰다. 모든 처리구에서 상대생체중과 수분흡 수율은 각각 처리 후 2일, 4일까지 증가하다 감소하는 경향을 보였다. 수확 직후 대비 처리 6일 후 화색 변화율과 잎의 엽록 소 함량은 수확 직후와 모든 처리구에서 차이가 없었으며, 화 폭증가율도 처리 간 차이가 없었다. 결론적으로 백색 LED + Azoxystrobin 보존용액처리는 절화장미의 꽃잎 위조와 청변화 증상을 감소시키지만, 절화수명 연장효과가 없었으며, 적색 +청색 LED 처리는 장미의 절화수명 연장효과에 효과적이었다.
In this study, the frequency response analysis of a bistable electromagnetic vibration energy harvester is performed, based on an electromagnetic oscillator model, to investigate its nonlinear dynamic behaviors. The displacement and current responses are obtained, by the direct integration of the model, with the variations of mechanical and electromagnetic parameters. It is shown that the operating frequency band of the system can be broadened by the increase in mechanical parameters(inertial mass and Q-factor), but it does not depend significantly on any electromagnetic parameters(an external load resistance and the internal resistance of a coil). On the other hand, the output current of the energy harvester is affected only by the electromagnetic parameters (specifically, the sum of two resistances). Thus, the mechanical and electromagnetic parameters of the electromagnetic energy harvester must be designed properly, respectively, for broader and more efficient performance.
In this study, a bistable energy harvester (BEH) with a piecewise potential function is proposed to improve its energy harvesting performance. A mathematical model of the piecewise BEH (PWBEH) system is established first and a series of numerical simulation are performed, based on the developed model, in order to investigate the nonlinear dynamic behaviors and energy-harvesting performance of the system. The analysis results for the proposed PWBEH system are compared with a conventional BEH (CBEH). The frequency response results show the stiffness-softening interwell motion of the PWBEH, due to the piecewise potential energy function, which is contrary to the stiffness-hardening behavior of the CBEH. Such softening behavior of interwell motion tends to reduce the operating frequency of the BEH, while significantly increasing the output power. This observation indicate that the introduction of the piecewise potential function to a BEH would be beneficial to the system design for enhancing enegy-harvesting performance at the cost of redundant frequency band, which depends on the characteristics of environmental vibration sources.
본 연구의 목적은 첫째 마찰 시 직물의 면적을 증가시켜 에너지 수확의 효율을 높일 수 있는 입체 자수 기법 및 전도성 직물 재료를 탐색하고, 둘째 높은 효율을 보이는 입체 자수 기법을 토대로 브러싱 가공을 실시하여 가공 후의 발생 전압을 분석하며, 셋째 이를 근거로 마찰 에너지 수확 증대형 직물의 구조를 탐색하는 것이다. 이를 위해 다음의 두 가지 실험을 실시하였다. “실험 Ⅰ”에서는 인체로부터 마찰 에너지를 수확하는 효율에 영향을 미치는 직물 내 주요 변인으로, 1) 입체 자수 기법(사틴 기법, 파일 기법), 2) 전도성 직물 재료(구리 기반 MPF, 니켈 기반 MPF)를 선정하고, 이 두 변인들의 조합에 따른 4개의 시료를 제작하여 마찰 시 발생 전압의 차이를 비교 분석하였다. “실험 Ⅱ”에서는 높은 효율을 보이는 입체 자수 방식의 시료를 대상으로 브러싱 가공을 실시하여 가공 후의 발생 전압을 분석하였다. 그 결과, 두 전도성 직물 재료 모두에 있어서 파일 자수 직물 구조가 사틴 자수 직물 구조에 비해 높은 마찰 에너지 수확 효율을 보였고, 이러한 결과는 마찰 면적에 따른 전하 밀도와 발생 전압이 비례하는 마찰 에너지 수확의 원리와 일치하였다. 이를 통해 마찰 면적이 큰 파일 자수 직물 구조가 마찰 면적이 상대적으로 작은 사틴 자수 직물 구조에 비해 에너지 수확 효율을 증대시키는데 유리한 방식임을 알 수 있었다. 또한 브러싱 가공 후의 에너지 수확 효율도 마찰 면적 증대로 인해 가공 전에 비해 높게 나타나, 브러싱 가공 방식이 마찰 에너지 수확 증대에 있어서 유리한 가공 방식임을 알 수 있었다.
Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.
에너지 위기의식이 급격히 고조되고 지속 가능한 친환경 에너지원이 이슈화되면서 휴대용 전자기기 산업의 발전은 전원을 공급하기 위한 새로운 에너지원을 요구하고 있으며, 이러한 점에서 언제 어디서나 전력 수확을 가능하게 하는 인체 전력에너지 수확 시스템의 연구가 요청된다. 인체 에너지를 수확하는 방식의 하나인 열전은 인체와 주위 환경간의 온도차이로부터 에너지를 수확하는 방식으로, 본 연구에서는 열전수확에 적합한 의복의 구조와 소재를 탐색하여 인체 전력에너지 수확의류를 위한 기초적 지침을 마련하고자 하였다. 이를 위해 의복의 폐쇄부 구조에 따른 환경 온도와 의복내 온도 간의 차이를 분석하고, 의복의 소재에 따른 환경 온도와 의복내 온도 간의 차이를 도출하였다. 분석 결과, 의복구조에 따른 의복내 온도에 있어서는 인체 부위에 따른 차별화된 결과를 얻을 수 있었는데, 가슴과 등 부위에서는 '폐쇄부 유'의 의복구조인 경우가 '폐쇄부 무' 의복구조에 비하여 의복내 온도가 더 높은 것으로 나타났고, 팔 부위에서 다리 부위로 갈수록 '폐쇄부 유'와 '폐쇄부 무'의 의복구조에 따른 의복내 온도의 차이가 줄어들었다. 한편, 의복소재에 따른 환경 온도와 의복내 온도 간의 차이를 분석한 결과, 두 소재 중 하나의 소재가 일관성 있게 더 높은 온도를 보이지는 않았으며, 인체 부위별로 차이를 보였다. 이러한 의복구조와 소재에 따른 환경 온도와 의복내 온도 간의 차이 결과를 토대로, 인체 전력에너지 수확의류를 위한 지침을 도출하였다.
인체의 동작으로부터 전기 에너지를 수확하려는 압전 에너지 수확에 관한 연구가 최근 활발히 진행되고 있으며, 본 연구에서는 이러한 압전 에너지 수확 소자를 의류에 적용하여 에너지 수확 의류를 설계하였다. 먼저, 동작에너지를 수확하는데 적합한 사지의 인체 부위를 밝히기 위해 3차원 모셥 캡쳐를 실시하였고, 그 결과 엉덩이, 팔꿈치, 무릎이 적합한 부위임이 밝혀졌으며, 이 중, 움직임이 자유로운 팔꿈치와 무릎이 동작에너지 수확 부위로 도출되었다. 압전 에너지 수확 소자의 경우 의류에 적용되기 위해서는 유연하면서도 동작에 민감하게 반응되는 새로운 구조가 필요하였으며, 2개 소자를 적층으로 구성하여 발생하는 전력량을 높이는 새로운 방식이 제안되었다. 의류의 경우 압전 에너지 수확 부위인 팔꿈치와 무릎 부위에서 인체에 잘 밀착되면서 움직임을 제한하지 않는 구조가 요구되었으며, 이에 가장 적합한 무봉제 의류로 제작되었다. 개발된 압전 에너지 수확소자를 부착한 에너지 수확 의류를 시험한 결과 높은 전기에너지 발생 결과를 얻을 수 있었다.
유비쿼터스 헬스케어 기술 및 휴대용 전자기기의 발전은 지속적으로 전원을 공급하기 위한 새로운 에너지원을 요구하고 있으며, 이러한 점에서 의류를 통한 인체 에너지 수확 시스템의 연구가 요청되고 있다. 인체에너지를 수확하는 방식의 하나인 열전은 인체와 주위 환경간의 온도차이로부터 에너지를 수확하는 방식으로, 본 연구에서 의복을 통한 열전에너지 수확의 기초자료를 확보하기 위하여 인체표면 온도의 분포를 실증적으로 고찰하였다. 이를 위해 체표 구간을 설정하고 구간별 온도분포를 분석하였다. 분석 결과, 상체의 체표온도가 하체에 비해 높았고 특히 심장과 가깝고 혈류량이 많은 몸통 부위의 체표온도가 높았다. 뒷목과 등, 허리의 후면 부위 체표온도가 앞면에 비해 높았으며, 팔 부위의 경우 위쪽 부위의 체표온도가 아래쪽 부위보다 높고 팔 후면이 정면과 측면에 비해 온도가 낮게 나타났다. 체표 구간별 평균 온도와 환경온 간의 차이값이 가장 높아 열전 수확 기능구조 설치에 가장 적합한 위치는 뒷목 부위로 나타났고, 등과 허리 부위, 측면 어깨부위, 가슴 부위, 정면 위팔 부위, 배 부위가 그 뒤를 이었다. 이러한 인체표면 온도분포 결과를 토대로, 본 연구에서는 열에너지 수확의류 개발을 위한 기본 지침을 도출하였다.
본 연구에서는 갤로핑/플러터와 웨이크 갤로핑과 같은 공력불안정현상을 이용한 에너지 수확 장치에 대한 적용가능성을 검토하였다. 이를 위해서, 작은 규모의 에너지 수확 장치를 설계 및 제작하였고, 이 장치들의 효율성과 효과를 증명하기 위한 일련의 실험을 수행하였다. 이러한 시험 결과로부터 공력불안전형상(갤로핑/플로터 및 웨이크 갤로핑)을 이용한 에너지 수확 시스템의 적용 가능성이 증명되었다.
고 고형분함량 감자 생산을 위한 수확시기를 예측하는 데 있어 에너지 소모량의 추정에 대한 연구결과는 다음과 같다. 1. 각 지역별로 포장의 파종시기부터 수확시기까지 최근 5년간(2005년~2009년) 평균기온, 강수량, 상대습도, 일조시간, 바람, 지중온도 등의 농업환경을 조사한 결과 파종기 저온피해와 괴경비대기 장마기간을 회피한다면 가공용 원료감자는 가공품 생산에 필요시마다 물량을 수급하기 때문에 만숙재배를 하지 않아 품종의존도가 낮아 수확시기의 환경에 대한 비중이 큰 것으로 판단되었다. 2. 파종시기부터 출현까지에는 지중온도에 영향을 많이 받아 지역별 편차가 심해 시뮬레이션에서는 출현시기를 기준으로 감자의 수확적기를 예측하는 것이 바람직하였다. 3 수확시기를 예측하기 위한 생장모형은 Tp=Tm~cdotWmTpWmTm를 사용하고, 생장량 Wm을 계상하는 기본 생장모형은 Wm=~intmtf(x)dt 를 사용하였다. 4. 기본 생장모형을 통해 Wm을 계상할 때는 광합성율(δA )과 식물체내 에너지 소모(δE ) 개념을 적용해야 보다 정밀한 수확시기를 예측할 수 있었으며, 식물체내 에너지 소모에 대한 정의는 기후변화에 대응하여 농업환경에 대처하는 식물체내 에너지 소모를 계상하는 것으로 최근 5년간(2005년~2009년) 수확시기에 따라 고형분함량을 측정한 결과 광합성율만 계상할 때 보다 에너지 소모개념을 적용한 것이 효과적이었다.