The production process of ultra-pure water (UPW) involves dozens of unit processes such as reverse osmosis (RO), pretreatments, membrane degasifier, and several ion exchange processes. Recently, continuous electrodeionization (CEDI) has replaced the 2-bed and 3-tower (2B3T) ion exchange process. As a result, the majority of wastewater in UPW production now comes from the RO concentrate. The important of RO in UPW production is to produce high-quality water with a low ion concentration (around 1 mg/L) for CEDI feed water. Minimizing RO concentrate is essential to reduce the wastewater produced in the UPW production process. This can be achieved by maximizing the recovery of the RO system. However, increasing the recovery is limited by the water quality of the RO permeate. To ensure high-quality permeate water, the RO system is designed with a two-pass configuration. The recovery of each pass in the RO system is limited (e.g., < 85%) due to the expected increase in permeate water concentration at higher RO feed water concentrations. Interestingly, tests using 4-inch RO modules with low concentration feed water (≤ 35 mg/L as NaCl) revealed that the permeate concentration remains almost constant regardless of the feed water concentration. This implies that the recovery of the first RO pass can be increased as long as the average feed/concentrate concentration of the second RO pass is less than 35 mg/L. According to this design criterion for the RO system, the recovery of the first and second RO pass, with a feed water concentration of 250 mg/L as NaCl, can be increased up to 94.8% and 96.0%, respectively. Compared to the conventional RO system design (e.g., 70% and 80% for the first and second RO pass) for UPW production, this maximum recovery design reduces the volume of RO feed and concentrate by up to 38.4% and 89.2%, respectively.
This study was conducted to evaluate the filtration performance according to the feed temperature composed of NaCl and the operating pressure of the brackish water reverse osmosis (BWRO) process. The temperature is known that decides the filtration performance of reverse osmosis (RO). It is noted that temperature increase activates the permeate of salts due to augment of diffusivity and mass transfer. Filtration of the lab-scale RO system was performed with constant pressure and the constant flow was simulated. The salt rejection measured by the concentration of the feed and permeate was compared with water permeability and salt permeability in the conditions containing various temperatures (5, 10, 15, 20, 25, and 30℃) and pressures (10, 12, 15, and 18 bar). An increase in feed temperature from 5 °C to 30 °C caused a 4.65% decrease in salt rejection in CSM, due to an increase in salt permeability (4.06 times) rather than an increase in water permeability (2.62 times). Specific energy consumption (SEC) was calculated by using an electricity meter set in the RO system. It was expected that the SEC by the increases in temperature and pressure decreased due to the viscosity decline of the feed and the permeate flux augment, respectively. The SEC decreased by 63.4% in CSM and by 54.3% in Nittodenko when the feed temperature increased from 5 °C to 30 °C. It discussed how to operate the optimal RO process through the effect of temperature and operating pressure and the comparison of SEC.
In this study, a pilot-scale (3 m3/day) membrane distillation (MD) process was operated to treat digestate produced from anaerobic digestion of livestock wastewater. In order to evaluate the performance and energy cost of MD process, it was compared with the pilot scale (10 m3/day) reverse osmosis (RO) process, expected competitive process, under same feed condition. As results, MD process shows stable permeate flux (average 10.1 L/m2/hr) until 150 hours, whereas permeate flux of RO process was decreased from 5.3 to 1.5 L/m2/hr within 24 hours. In the case of removal of COD, TN, and TP, MD process shows a high removal rate (98.7, 93.7, and 99% respectively) stably until 150 hours. However, in the case of RO process, removal rate was decreased from 91.6 to 69.5% in COD and from 93.7 to 76.0% in TP during 100 hours of operation. Removal rate of TN in RO process was fluctuated in the range of 34.5-62.9% (average 44.6%) during the operation. As a result of energy cost analysis, MD process using waste heat for heating the feed shows 18% lower cost compare with RO process. Thus, overall efficiency of the MD process is higher then that of the RO process in terms of permeate flux, removal rate of salts, and operating cost (in the case of using waste heat) in treating the anaerobic digestate of livestock wastewater.
2018년 환경부에서 발표된 수도정비기본계획에 따라 다양한 수자원 활용의 중요성이 증가하고 있으며, 여러 수원 을 혼합하여 원수 또는 생산수로 활용하는 워터 블렌딩 방식은 미국, 호주를 비롯한 여러 나라에서 시도되고 있다. 본 연구에 서는 공업용수 공급 목적으로 100,000 m3/일 규모 해수담수화 사업이 추진되고 있는 충남 대산 지역을 대상으로, 해수와 호 소수, 침전수, 폐수 방류수 등 타 수원을 블렌딩할 때 수종 및 혼합비율에 따른 영향을 분석하였다. 타 수원 혼합비율 10~50% 조건에서 혼합수 염분농도는 약 50%까지 감소하였지만, 탁질 및 유기물 농도는 1.6~2.0배 수준으로 증가하는 것을 확인하였 다. 실험실 규모 역삼투 공정 성능평가 결과, 해수의 단독활용 대비 원수 혼합 시 막오염 경향이 증가하였으며 혼합비율 10~50%에서 평균 4.1배의 플럭스 저감률을 나타내었다. 성능모사를 통한 역삼투 공정 성능분석에 따르면 혼합비율 50% 조 건에서 역삼투 공정 에너지 사용량이 평균 39% 절감될 수 있을 것으로 기대되나, 운영비용 등 혼합수 활용에 대한 전반적인 영향분석을 위해서는 모형플랜트 규모에서 장기간 성능평가가 필요하다.
Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.
본 연구에서는 하수처리유출수의 유기물 성상을 제어하기 위해 서로 다른 흡착제를 적용하여 역삼투막의 막오염 경향성을 관찰하였다. 실험실 규모에서 역삼투막 운전결과, 다중벽탄소나노튜브 (5%), 팽창흑연 (21%), 하수처리유출수(25%), 활성탄 (26%) 순서로 초기대비 투과수량이 감소하였다. 형성된 막오염 물질의 FEEM 분석결과, 활성탄의 경우 팽창흑연, 다중벽탄소나노튜브, 하수처리 유출수에 상대적으로 높은 미생물유래물질에 의한 막오염이 존재하였다. 더 나아가, 분자량 분석 결과를 통해 고분자 미생물유래물질(>15K Da)의 영향이 큰 것을 확인하였다. 결과적으로, 하수재이용공정에서 고분자 미생물유래물질이 역삼투막 효율저하의 주요한 역할을 하며, 이를 저감시키기 위한 방안마련이 필요하다고 판단되었다.
Recently, many efforts to enhance separation performance of the reverse osmosis (RO) membranes have been made. Among them, the post treatment with organic solvent, so called solvent activation, has been recognized as an effective method to improve membrane performance. However, solvent activation enhances water flux along with the loss of NaCl rejection. Furthermore, there have been no clear mechanisms and reliable criteria of the solvent activation effects. In this study, we demonstrate that a new type of organic solvent, benzyl alcohol, can effectively activate the RO membrane to significantly enhance water permeation without deteriorating NaCl. Based on this results, we elucidate the underlying solvent activation mechanism and propose a reliable indicator of the solvent activation effect.
본 연구에서는 향후 역삼투식 해수담수화 기술의 에너지 효율을 개선하기 위한 3가지 방법을 제안한다. 그리고 제안된 방법이 적용되었을 때, 이론적인 최대 에너지 소모량 감소를 엑서지 분석을 통해 산출하고 현재 개발되고 있는 기술을 분석해서 실질적으로 각 방법에서 에너지 소모량이 얼마나 감소될 수 있는지를 비교하고 분석한다. 이러한 논의를 통해서 향후 역삼투 공정의 에너지 소모량이 얼마나 더 감소할 수 있을지에 대한 가능성을 평가할 수 있고 나아가서 역삼투 해수담수화 플랜트의 에너지 소모량을 낮추는 명확한 아이디어를 제공할 수 있다.
In this research, the applicability of modified fouling index (MFI) on ultrapure water (UPW) production system was assessed to predict performance of reverse osmosis (RO) process. The practical study on MFI-UF was first performed at a pilot-scale UPW plant (Hwaseong-si, Gyeonggi-do, Korea), monitoring water quality parameters (i.e., conductivity, turbidity and TOC) as well as MFI-UF of pretreatment stage for 10 months. While water quality parameters were maintained in a stable manner, the MFI-UF was fluctuated implying the different propensity of RO influent. The increment of fouling potential was intimately related with RO performance, the aggravation of permeate quality. The sensitivity of MFI-UF was also verified by evaluating the fouling potential of reclaimed water in UPW production system.
바이오파울링은 역삼투막 여과 공정에서 운전 성능을 저해하는 주요 원인이다. 이전 연구들은 분리막 표면에 발생하는 바이오파울링을 제어하기 위해서 화학적 세정제를 주입하는 방법을 주로 사용하였다. 화학적 세정제의 주입은 분리막의 손상뿐만 아니라 이차적으로 수계 오염을 발생시키기 때문에 주입 농도와 운영 방법에 주의가 요구된다. 이러한 문제를 극복하기 위해, 본 연구에서는 분리막 표면에 생물막 저해제를 고정하여 바이오파울링을 제어하는 연구를 수행하였다. 표면 고정화를 위한 방법으로 Layer-by-layer 기술을 적용하였고, 생물막저해제로 클로르헥시딘과 글루타알데하이드를 사용하였다. 막 표면의 생물막 저해제 고정화는 미생물의 부착 억제 및 사멸로 생물막 형성이 지연되어 운전 성능이 유지되는 효과를 나타냈다.
가솔린, 플라스틱, 섬유 등 수많은 일상 소재들의 원재료를 저에너지 및 저탄소 공정으로 생산하는 것은 석유화학 회사들의 초미의 관심사라고 할 수 있다. 특히 우리나라는 원유를 해외에서 수입하고 이를 분리 및 정제 하여 다양한 고부가 가치를 창출하는데 여러 집약된 기술에 의존하고 있다. 이와 같은 석유화학 원재료들이 복합적으로 섞여있는 혼합물로부터 비슷한 종류의 성분을 분리하는 공정에 전 세계적으로 막대한 양의 열에너지가 소비 된다. 본 발표에서는 석유화학 에너지 비용을 낮출 수 있는 멤브레인 기반 상온 액상 탄화수소 역삼투 분리 공정에 대해 소개하고자 한다. 특히 탄소 분자체 기반 분리막의 제조와 이의 응용에 대한 내용을 다루고자 한다.
Recently, interest in the development of alternative water resources has been increasing rapidly due to environmental pollution and depletion of water resources. In particular, seawater desalination has been attracting the most attention as alternative water resources. As seawater desalination consumes a large amount of energy due to high operating pressure, many researches have been conducted to improve energy efficiency such as energy recovery device (ERD). Consequently, this study aims to compare the energy efficiency of RO process according to ERD of isobaric type which is applied in scientific control pilot plant process of each 100 m3/day scale based on actual RO product water. As a result, it was confirmed that efficiency, mixing rate, and permeate conductivity were different depending on the size of the apparatus even though the same principle of the ERD was applied. It is believed that this is caused by the difference in cross-sectional area of the contacted portion for pressure transfer inside the ERD. Therefore, further study is needed to confirm the optimum conditions what is applicable to the actual process considering the correlation with other factors as well as the factors obtained from the previous experiments.