In this paper, we proposed and tested an indoor obstacle recognition and avoidance algorithm using vision and ultrasonic sensors for effective operation of drone with low-power. In this paper, the indoor flight of a drone is mainly composed of two algorithms. First, for the indoor flight of the drone, the vanishing point and the center point of the image were extracted through Hough transform of the input image of the vision sensor. The drone moves along the extracted vanishing point. Second, we set an area of interest so that the drone can avoid obstacles. The area of interest is a space where the drone can fly after recognizing an obstacle at a distance from the ultrasonic sensor. When an obstacle is recognized in the drone's area of interest, the drone performs an obstacle avoidance action. To verify the algorithm proposed in this paper, a simple obstacle was installed in an indoor environment and the drone was flown. From the experimental results, the proposed algorithm confirmed the indoor flight and obstacle avoidance behavior of the drone according to the vanishing point.
본 연구에서는 콘크리트 이미지에서 균열의 크기와 위치를 검출하는 알고리즘을 개발하였다. 균열은 총 9단계로 자 동 검출되었으며, 기본 기능은 매트랩 프로그램의 기능이었다. 5단계와 8단계에서는 균열 검출 정확도를 높이기 위해 사용자 알고리즘을 추가하였으며, 균열 영상과 비균열 영상을 각각 1,000개씩 사용하였다. 균열 이미지에서는 균열이 100% 검출됐지만 품질 측면에서 나쁘지 않은 결과를 제외하더라도 91.8%의 결과가 매우 양호했다. 또한, 균열되지 않은 이미지의 정확도도 94.7%로 매우 양호했다. 이에 본 연구에서 제시한 균열검출 알고리즘은 콘크리트 우물 균열의 위치와 크기를 검출할 수 있을 것으로 기대된다.
국내뿐만 아니라 국외에서도 소고기 품질 종합 판정의 과정은 숙련된 인력에 의해 수행되고 있다. 숙련된 전문가라도 주관적인 견해가 포함 될 가능성이 존재하는 현행의 과정을 개선하고, 판정에 필요한 인자(근내지방도, 지방색, 육색 등)를 보다 객관적으로 획득하기 위해 다양한 센서 및 분석법을 활용하는 시도가 전세계적으로 활발하게 진행되고 있다. 하지만, 선행 연구들의 최종 목표인 현장 실용화 단계로의 적용은 미미한 실정이다. 이에 본 연구에서는 Computer vision 장치로 촬영한 영상을 소고기 품질 판정 과정의 시각 대체 자료로 활용하고, 다양한 영상처리 기법을 이용하여 소고기 품질 판정에 필요한 주요 인자의 추출 가능성을 확인하고자 하였다. 이 과정에서 소고기 품질 판정에 필요한 주요 인자 중 근내지방도를 본 연구의 대상으로 선정하였으며, 근내지방을 효과적으로 추출하는 영상처리 알고리즘을 도입하고, 본 연구에 적합한 알고리즘을 판단하고자 하였다. 소고기 품질 판정에 사용되는 등심 부위의 RGB 영상을 촬영하였다. 촬영된 영상의 기하학적 왜곡과 색상 왜곡을 보정하여, 영상 획득 과정에서 발생하는 기계적 오차를 최소화 하고자 하였다. 보정된 영상에서 배경을 제거하고, 관심 영역(Region of Interest)을 추출하였다. 추출한 영역에서 근내지방을 추출하기 위해 MSER(maximally stable extremal regions) 알고리즘을 중점으로 사용하였고, 이를 제외한 다양한 영상처리 알고리즘도 적용하여 활용 가능성을 확인하였다. 이를 바탕으로, 추후 연구에서는 소고기 품질 판정의 주요 인자인 근내지방의 추출 알고리즘을 개발하고, 나아가 소고기 품질 판정 시스템 구축을 최종 목표로 하고 있다.
기존 온·습도 센서와 여러 가스센서에 의해 측정 및 제어되는 돈사환경제어시스템에 돼지의 체온조 절행동에 근거한 생체정보를 이용하여 외부 환경정보를 보정한다면 보다 정밀한 축사 환경제어를 할 수 있다. 이를 위한 본 연구는 ICT기술을 접목한 스마트돈사의 정밀환경제어를 위한 기초연구로 획득된 이 미지를 바탕으로 돼지의 행동특성을 3가지로 분류하기 위한 영상처리시스템 알고리즘을 제시하고자 한 다. 공시재료는 실험돈사에서 사육되고 있는 육돈용 자돈(F2, 36~40kg) 3마리를 이용하였으며, 영상처 리를 수행하고자 천정에 설치된 카메라를 통해 획득된 이미지를 이용하였다. 영상처리를 위한 프로그램 은 Visual Studio C과 다양한 영상처리를 위해 개발된 오픈 소스 라이브러리인 OpenCV Library를 이 용하여 구현하였다. 행동분류 알고리즘은 각 돼지의 중심점 데이터, 돼지가 차지하는 면적, 돼지 사이 의 거리를 구하고자 전처리를 수행한 이미지를 RGB 색상계에서 YCrCb 색상계로 변환하였으며, 히스토 그램 평활화(Histogram Equalization), cvBlob함수를 사용하여 Labeling 알고리즘을 수행하였다. 영상 처리 결과, 검증 이미지를 대상으로 군집형태 A로 판단된 결과는 면적만 고려한 것과 거리와 면적을 같 이 고려하였을 때 인식률 95%를 나타내었다. 군집형태 B의 경우 면적만을 고려하였을 경우 65%, 면적 과 거리를 모두 고려하였을 경우 95%로 나타났다. 군집형태 C의 경우 면적만을 고려하였을 경우 25%, 면적과 거리를 모두 고려하였을 경우 100%로 나타나 환경정보 보정자료로 활용이 가능한 것으로 판단 되었다.
본 논문에서는 문턱치 기반의 영상처리 알고리즘을 이용한 인셀(in-shell)헤이즐럿과 셀드(shelled)헤이즐럿의 분류 방법을 제안한다. 헤이즐럿은 외피가 있는 인셀 형태, 내피만 있는 셀드 형태, 내피도 제거된 블랜치드 (blanched)형태, 그리고 모든 껍질을 제거한 후 알맹이를 볶아 판매하는 로스티드(roasted)형태로 제품화 된다. 그러나 생산, 이송과 가공 과정에서 외피가 쉽게 박피되기 때문에 각 단계별로 제품을 판매하기 위해서는 일차적으로 인셀 헤이즐럿과 셀드 헤이즐럿을 구별하여 제품화하는 것이 필요하다. 따라서 본 논문에서는 각 단계의 헤이즐럿 표면에 대한 영상처리 기반 분석을 바탕으로 18개의 문턱치 기반의 선별인자를 얻고 이를 바탕으로 실시간 선별이 가능한, 인셀 및 셀드 헤이즐럿의 분류 알고리즘을 제안한다. 제안한 방법을 선별에 적용한 결과 인셀 헤이즐럿의 선별 정확 도는 98%이며 나머지 셀드 헤이즐럿의 선별 정확도는 94%를 보였다.
본 연구에서는 파프리카 수확기 개발의 일환으로 엔드 이펙터의 정확한 제어를 위하여 스테레오 영상으로 파프리카를 인식하고 인식된 파프리카의 공간 좌표를 획득하기 위하여 영상처리 알고리즘을 개발하고자 하였다. 먼저, 색상 정보를 이용하여 파프리카 영상을 추출하기 위하여 히스토그램 분석을 수행하였고 결과에 따른 임계값 을 설정하였다. 임계값에 의해 추출된 파프리카 영역에 대해 스테레오 대응을 수행하기 위해 실험에 사용된 스테레오 영상의 F 행렬을 구하였고 이를 이용하여 에피 폴라선을 구하여 대응을 수행하였다. 대응을 수행 할 때는 색상 영상을 이용하여 강조 마스크와 컨벌루션을 통해 중심 픽셀과 수직, 수평방향 이웃 픽셀에 가중치를 적용하여 강조한 후 최소 자승 오차를 갖는 점을 대응 점으로 추출하였다. 추출 된 대응 점간의 거리를 스테레오 영상의 기하학적인 관계를 이용하여 실제 거리를 계산하였고, 계산된 거리(Z)값을 이용하여 수평(X), 수직 (Y) 방향 공간 좌표를 획득하였다. 그 결과 수평 방향 오차 평균 5.3mm, 수직 방향 오차 평균 18.8mm, 거리 오차 평균 5.4mm로 나타났으며, 거리 400~450mm 구간과 영상의 모서리 부분의 왜곡이 발생하는 부분에서 오차가 다른 구간에 비해 크게 나타나는 것을 확인 할 수 있었다.
영상처리는 정확한 오이의 형상 및 위치를 인식하기 위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 다양한 오이형상을 인식하기 위한 방법으로는 신경회로망의 연상 메모리 알고리즘을 이용하여 오이의 특정형상을 인식하였다. 형상인식은 실제영상에서 오이의 형상과 위치를 판정할 수 있도록 알고리즘을 개발한 결과, 다음과 같은 결론을 얻었다. 본 알고리즘에서는 일정한 학습패턴의 수를 2개, 3개, 4개를 각각 기억시켜 샘플패턴 20개를 실험하여 연상시킨 결과, 학습패턴으로 복원된 출력패턴의 비율은 각각 65.0%, 45.0%, 12.5%로 나타났다. 이는 학습패턴의 수가 많을수록 수렴할 때, 다른 출력패턴으로 많이 검출되었다. 오이의 특정형상 검출은 30×30간격으로 자동검출 되도록 처리하였다. 실제영상에서 자동 검출로 처리한 결과, 오이인식의 처리시간은 약 0.5~1초/1개(패턴) 빠르게 검출되었다. 또한, 다섯 개의 실제 영상에서 실험한 결과, 학습패턴에 대한 다른 출력패턴은 96~99%의 제거율을 나타내었다. 오이로 인식된 출력패턴 중에서, 오검출된 출력패턴의 비율은 0.1~4.2%를 나타내었다. 본 연구에서는 신경회로망을 이용하여 오이의 형상 및 위치를 인식할 수 있도록 알고리즘을 개발하였다. 오이의 위치측정은 실제영상에서 학습패턴과 유사한 출력패턴의 좌표를 가지고, 오이의 위치좌표를 추정할 수 있었다.
해충의 발생시기와 발생량에 대한 정확한 예찰정보는 해충의 효율적인 종합적 방제를 위하여 필수적으로 요구된다. 해충의 효율적인 발생 예찰조사를 위해 디지털 영상처리 알고리즘을 이용하여 벼농경지에서 주요 해충인 멸구류를 자동적으로 인식하고 밀도를 측정하도록 하였다. 야외경작지에서 촬영한 입력영상에 대해 구성인자분해과정, 탑헷(top-hat)변환, 역치적용, 최소/최대 필터링 등의 방법을 적용하여 벼 잎에 붙어 있는 멸구 개체를 인식하고 개체수를 헤아렸다. 평균인식율은 95.8%를 보였다. 또한 인지된 각 멸구류 개체 크기를 측정하여 멸구류의 연령분포 추정을 가능하게 하였다
In this study, we adapted very low resolution (240x320 = 76,800 pixels) images by which it is difficult to detect cracks. An automatic crack detection technique has been studied using digital image processing technology for low resolution images of sewage pipeline. Authors have developed two algorithms to detect cracks. The third step covers an algorithm developed to find optimal threshold value, and the sixth step deals with algorithm to determine cracks. As the result, in spite of very low-resolution images, the performance of crack detection turned out to be excellent.