검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 83

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aimed to develop a quantitative structure property relationships (QSPR) model to predict the density from the molecular structure information of the asphalt binder AAA1, a non-full connected structure mixed with a total of 12 molecules. METHODS : The partial least squares regression (PLSR) model, which models the relationship between predictions and responses and the structure of these variables, was applied to predict the density of a binder with molecule descriptors. The PLSR model could also analyze data with collinear, noisy, and multiple dimensional independent variables. The density and additive-free AAA1 binder’s molecule systems generated by an asphalt binder’s molecules-related study were used to fit the PLSR model with the molecular descriptors produced using alvaDesc software. In addition to developing the relationship, a systematic feature selection framework (i.e., the V-WSP- and PLSR-modelbased genetic algorithm (GA)) was applied to explore sets of predictors which contributed to predicting the physical property. RESULTS : The PLSR model accurately predicted the density for the AAA1 binder’s molecules using the condition of the temperature and aging level (R2 was 0.9537, RMSE was 0.00424, and MAP was 0.00323 for the test data) and provided a set of features which correlated well to the property. CONCLUSIONS : Through the establishment of the physical property prediction model, it was possible to evaluate the physical properties of construction materials without limited experiments or simulations, and it could be used to comprehensively design the modified material composition.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of real-world decision-making processes are used to optimize problems with many objectives of conflicting. Since the betterment of some objectives requires the sacrifice of other objectives, different objectives may not be optimized simultaneously. Consequently, Pareto solution can be considered as candidates of a solution with respect to a multi-objective optimization (MOP). Such problem involves two main procedures: finding Pareto solutions and choosing one solution among them. So-called multi-objective genetic algorithms have been proved to be effective for finding many Pareto solutions. In this study, we suggest a fitness evaluation method based on the achievement level up to the target value to improve the solution search performance by the multi-objective genetic algorithm. Using numerical examples and benchmark problems, we compare the proposed method, which considers the achievement level, with conventional Pareto ranking methods. Based on the comparison, it is verified that the proposed method can generate a highly convergent and diverse solution set. Most of the existing multi-objective genetic algorithms mainly focus on finding solutions, however the ultimate aim of MOP is not to find the entire set of Pareto solutions, but to choose one solution among many obtained solutions. We further propose an interactive decision-making process based on a visualized trade-off analysis that incorporates the satisfaction of the decision maker. The findings of the study will serve as a reference to build a multi-objective decision-making support system.
        4,000원
        8.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        부분구조화 기법은 자유도가 많고 복잡한 구조물의 유한요소 해석 모델 단순화에 효율적으로 적용될 수 있는 기법이다. 대표적으 로 선형 문제에 대해서는 Craig-Bampton method 등이 있다. Craig-Bampton method는 경계 요소를 제외한 나머지 요소의 불필요한 자 유도를 제거함으로써 선형 구조물의 축소를 수행한다. 최근에는 부분구조화 기법과 더불어 구조물의 최적설계를 위해 멀티레벨 최적 화 기법이 많이 활용되고 있다. 시스템의 목표를 달성하기 위해 각 부구조에 새로운 목표를 할당하는 기법이다. 본 연구에서는 유전자 알고리즘을 이용하여 시스템 목표 달성을 위한 각 부구조별 내부 자유도 개수를 새로운 목표로 할당하고 최적화를 수행하였다. 최적 화 절차로부터 도출된 부구조별 내부 자유도 개수를 이용하여 시스템의 축소를 수행하였다. 다양한 수치예제들을 통해 축소 모델에 대한 결과를 확인하였으며, 90% 이상의 정확도를 가지는 것을 확인하였다.
        4,000원
        9.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A60 급 갑판 관통 관은 선박과 해양플랜트에서 화재사고가 발생할 경우 화염의 확산을 방지하고 인명을 보호하기 위해 수평구조에 설치되는 방화장치이다. 본 연구에서는 다양한 대리모델과 다중 섬유전자 알고리즘을 이용하여 A60 급 갑판 관통 관의 방화설계에 대한 이산변수 근사최적화를 수행하였다. A60 급 갑판 관통 관의 방화설계는 과도 열전달해석을 통해 평가하였다. 근사최적화에서 관통 관의 길이, 지름, 재질, 그리고 단열재의 밀도는 이산설계변수로 적용하였고, 제한조건은 온도, 생산성 및 가격을 고려하였다. 대리모델 기반의 근사최적설계 문제는 제한조건을 만족하면서 A60 급 갑판 관통 관의 중량을 최소화할 수 있는 이산설계변수를 결정하도록 정식화 하였다. 반응표면모델, 크리깅, 그리고 방사기저함수 신경망과 같은 다양한 대리모델이 근사최적화에 사용되었다. 근사최적화의 정확도를 검토하기 위해 최적해의 결과는 실제 계산 결과와 비교하였다. 근사최적화에 사용된 대리모델 중 방사기저함수 신경망 모델이 A60 급 갑판 관통 관의 방화설계에 대해 가장 정확한 최적설계 결과를 나타내었다.
        4,000원
        10.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.
        4,200원
        11.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.
        4,000원
        12.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantum-inspired Genetic Algorithm (QGA) is a probabilistic search optimization method combined quantum computation and genetic algorithm. In QGA, the chromosomes are encoded by qubits and are updated by quantum rotation gates, which can achieve a genetic search. Asset-based weapon target assignment (WTA) problem can be described as an optimization problem in which the defenders assign the weapons to hostile targets in order to maximize the value of a group of surviving assets threatened by the targets. It has already been proven that the WTA problem is NP-complete. In this study, we propose a QGA and a hybrid-QGA to solve an asset-based WTA problem. In the proposed QGA, a set of probabilistic superposition of qubits are coded and collapsed into a target number. Q-gate updating strategy is also used for search guidance. The hybrid-QGA is generated by incorporating both the random search capability of QGA and the evolution capability of genetic algorithm (GA). To observe the performance of each algorithm, we construct three synthetic WTA problems and check how each algorithm works on them. Simulation results show that all of the algorithm have good quality of solutions. Since the difference among mean resulting value is within 2%, we run the nonparametric pairwise Wilcoxon rank sum test for testing the equality of the means among the results. The Wilcoxon test reveals that GA has better quality than the others. In contrast, the simulation results indicate that hybrid-QGA and QGA is much faster than GA for the production of the same number of generations.
        4,000원
        13.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
        4,000원
        17.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철근콘크리트 건물에 대한 유전자 알고리즘 기반의 최적구조설계기법을 제시하고자 한다. 목적함수는 구조 물의 비용과 이산화탄소 배출량을 동시에 각각 최소화하는 것이다. 비용 및 인산화탄소 배출량은 구조설계안에서 얻을 수 있는 단면치수, 부재길이, 재료강도, 철근량 등과 같은 설계정보를 통해 계산한다. 즉, 구조물의 물량을 기초로 하여 비용과 이산화탄소 배출량을 평가한다. 재료의 운반, 시공 및 건물 운영 단계에서 발생하는 비용 및 이산화탄소 배출량은 본 연구에 서 제외한다. 제약조건은 철근콘크리트 건물을 구성하는 기둥과 보 부재의 강도조건과 층간변위조건이 고려된다. 제약조건 을 평가하기 위해 OpenSees를 활용한 선형정적해석이 수행된다. 제약조건을 만족시키면서 목적함수에 대해 최소의 값을 제 시하는 설계안을 찾기 위해 유전자 알고리즘이 사용된다. 제시한 알고리즘의 적용성을 검증하기 위해 4층 철근콘크리트 모 멘트 골조 예제에 제시하는 기법을 적용하여 검증한다.
        4,000원
        18.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 철골모멘트골조의 보-힌지 붕괴모드를 유도하는 최적 내진설계기법을 제안한다. 이는 유전자알고리즘을 사용하며, 기둥의 소성힌지 발생을 억제하는 제약조건을 설정하여 보-힌지 붕괴모드를 유도한다. 제안하는 기법은 구조물량를 최소화하고 에너지소산능력을 최대화하는 목적함수를 사용한다. 제안하는 기법은 9층 철골모멘트골조 예제 적용을 통해 검증한다. 예제 적용을 통해 철골모멘트골조의 보-힌지 붕괴모드를 유도하기 위해 요구되는 기둥-보 강도비를 평가한다. 패널존에 대한 3가지 모델링 기법을 각각 적용하여 모델링 조건에 따른 휨강도비 영향이 추가적으로 검토된다.
        4,000원
        20.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The Toll Collection System (TCS) operated by the Korea Expressway Corporation provides accurate traffic counts between tollgates within the expressway network under the closed-type toll collection system. However, although origin-destination (OD) matrices for a travel demand model can be constructed using these traffic counts, these matrices cannot be directly applied because it is technically difficult to determine appropriate passenger car equivalent (PCE) values for the vehicle types used in TCS. Therefore, this study was initiated to systematically determine the appropriate PCE values of TCS vehicle types for the travel demand model. METHODS: To search for the appropriate PCE values of TCS vehicle types, a traffic demand model based on TCS-based OD matrices and the expressway network was developed. Using the traffic demand model and a genetic algorithm, the appropriate PCE values were optimized through an approach that minimizes errors between actual link counts and estimated link volumes. RESULTS : As a result of the optimization, the optimal PCE values of TCS vehicle types 1 and 5 were determined to be 1 and 3.7, respectively. Those of TCS vehicle types 2 through 4 are found in the manual for the preliminary feasibility study. CONCLUSIONS: Based on the given vehicle delay functions and network properties (i.e., speeds and capacities), the travel demand model with the optimized PCE values produced a MAPE value of 37.7%, RMSE value of 17124.14, and correlation coefficient of 0.9506. Conclusively, the optimized PCE values were revealed to produce estimates of expressway link volumes sufficiently close to actual link counts.
        4,000원
        1 2 3 4 5