The customer of massage chair is expanding day by day from middle age to all ages. In 2018, the market size was 700 billion KRW, an increase of 30 times over 10 years. However, most related SMEs suffer from excessive competition by the market monopoly of some major companies. In this situation, in order for a related company to survive, it is necessary to steadily research and develop new products. Founded in 2009, company L produces massage chairs for health and relaxation of customers. L’s products use a sound wave vibration module that is favorable for human body, unlike other products that use vibration motor type. However, frequent breakdowns of massage chair due to the vulnerability of plate (leaf) springs, which play an important role in sound wave vibration modules, made sap its competitiveness. In this paper, we propose a method to design desirable plate spring structure by sequentially experimenting with five different plate springs. The results of this study are expected to contribute to improve the quality of plate spring and the reliability of sound wave vibration module. In the future, it is necessary to find a way to use it in the development of foot massage or scalp management device as well as continuous research to find optimal plate spring structure through various analysis.
For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of (1 - x)Pb(Zr0.515Ti0.485)O3 - xPb(Sb1/2Nb1/2)O3 + 0.5 wt% MnO2 [(1 - x)PZT - xPSN + MnO2] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at 1250˚C for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to 1.3μm by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+MnO2 ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + MnO2 system, exhibited good piezoelectric properties: a piezoelectric constant (d33) of 325 pC/N, an electromechanical coupling factor (kp) of 70.8%, and a mechanical quality factor (Qm) of 1779. The specimens with a relatively high curie temperature (Tc) of 305˚C also showed a significantly high dielectric constant (εr) value of 1109. Therefore, the 0.96PZT - 0.04PSN + MnO2 ceramics are suitable for use in ultrasonic vibrators.
Ultrasonic vibrator is an equipment which atomizes and homogenizes the oils by breaking the oil particles with ultrasonic vibration cavity, and possibly improves the properties. There are various parameters on the effect of ultrasonic irradiation. Especially, this study intended to investigate the matrix structure of sludge oils and the erosion damages for horn disc SS41 according to the variation of the oil temperature and the immersing depth of horn disc. Sludge oils were irradiated with ultrasonic vibration and then observed the aspects of the change of oil particles. From these, the recycling feasibility of sludge oil for useable oil to be burnt was determined. The erosion damages for horn disc SS41 were examined with weight loss, weight loss rate and the irradiation time to max. erosion rate. These data will be useful to the development of ultrasonic breaking systems to recycle sludge oil and to consider a countermeasure for the prevention of erosion damages.
A ultrasonic transduce with a single acoustic matching layer has been designed as an attempt to increase the bandwidth of underwater transducer. The wideband resonance condition was accomplished by attaching a single matching layer on the front face of a ceramic resonator composed of a piezoelectric bar, a taper part and a head part. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedance and thickness of the matching layer in the water tank.The obtained results are summarized as follows:1. Measured resonant and antiresonant frequencies of the piezoelectric transducer with no matching layer in air were 24.7 kHz and 25.6 kHz, respectively. 2. Two resonant frequencies of the piezoelectric transducer with a single matching layer were 21.7 kHx and 26.9 kHz, respectively, in air and 21.4 kHz and 22.7 kHz, respectively, with a water load.3. Two distinct resonance peaks in the transmitting voltage response(TVR) of the developed transducer were observed at 22.0 kHz and 25.8 kHz, respectively, with center frequency of 24.0 kHz. The values of TVR at these frequencies were 130.1 dB re 1 μPa/V at 22.0 kHz and 128.5 dB re 1 μPa/V at 25.8 kHz, respectively.Reasonable agreement between the experimental results and the numerical values was achieved.