검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 81

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        청정에너지는 원유 사용으로 인한 이산화탄소 배출로 환경오염이 계속 증가하는 이 시기에 필요한 에너지이다. 리튬 이온 배터리는 훌륭한 대안 중 하나이지만 막대한 수요로 인해 오염은 물론 비용이 증가한다. 배터리에서 사용한 리튬 을 재활용하는 것이 상기 문제를 해결하는 가장 좋은 방법이다. 정전 용량 탈이온화 공정(capacitive deionization, CDI)에서 는, 셀을 통과하는 전해질에 존재하는 양이온과 음이온이 전극 물질로 전환되고 전극의 극성이 반대가 됨으로써 탈착된다. 전 극의 특성을 개선하는 것이 리튬 이온 회수를 향상시키는 데 있어 핵심이다. 주요 문제는 리튬 이온의 낮은 탈삽입과 선택성 이다. 망간 산화물과 같은 전이 금속 산화물이 탄소 나노튜브로 코팅될 경우, 리튬 회수 성능이 향상된다. 본 리뷰 논문에서 는 폴리머 기반 전극과 복합 전극에 의한 리튬 회수에 대해 설명하며, 최근 전극 소재의 발전이 CDI 성능 향상에 어떻게 기 여하는지에 대해 초점을 맞춘다. 이러한 발전이 리튬 회수 효율 개선에 어떻게 기여하는지 설명하며, 기존 문헌을 보완하고 확장하는 관점을 제시한다.
        4,000원
        12.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        음이온 교환막은 수전해 시스템에서 매우 중요한 역할을 하며, 생성된 수소와 산소 기체를 물리적으로 분리할 뿐 만 아니라 전극 사이에서 수산화 이온의 선택적인 전달을 용이하게 한다. 음이온 교환막에 요구되는 특성은 수산화 이온에 대한 높은 전도도와 알칼리 환경에서의 화학적/기계적 안정성 등이 있다. 본 연구에서는 셀룰로오스 나노 크리스탈이 포함된 poly(terphenyl piperidinium) (qPTP/CNC) 복합매질분리막을 제조하였다. 고분자 매질로 사용된 poly(terphenyl piperidinium) 은 super-acid 중합법을 통해 제조되었으며 이온전도성과 알칼라인 내구성이 뛰어난 소재로 알려져 있다. qPTP/CNC 분리막 의 구조는 고분자와 나노 입자 계면의 공극이나 큰 응집체가 없는 조밀하고 균일한 형태를 나타냈다. CNC 나노 입자가 2 wt% 첨가된 qPTP/CNC 분리막은 높은 이온교환용량(1.90 mmol/g)과 낮은 함수율(9.09%) 및 팽윤도(5.56%)를 보였다. 또한, 복합막은 수전해 작동 환경인 50°C 1 M KOH에서 상용 FAA-3-50 분리막에 비해 월등히 낮은 저항과 우수한 알칼라인 내구 성(384시간)을 달성했다. 이러한 결과는 친수성 첨가제인 CNC가 음이온 교환막의 이온 전도 특성과 알칼라인 내구성 향상에 기여할 수 있음을 보고하였다.
        4,000원
        18.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가스 분리 방법 중에서도, 멤브레인을 이용한 CO2 포집 및 분리는 지속적으로 개발되고 있는 꾸준히 성장하는 분 야이다. 이온성 액체(IL) 기반 복합 막은 CO2를 분리하는 데 있어 우수한 성능값을 보여준다. 유사하게, 다양한 공중합체/IL 복합막 또한 향상된 성능을 보여준다. 이러한 공중합체/IL 복합만에 산화그래핀과 같은 필러를 첨가하면 IL과 유기 필러 사 이에서 발생하는 강한 상호작용으로 인해 필러의 효과가 더욱 향상되며, 이는 결과적으로 CO2의 친화도, 선택도 및 흡착과 같은 요소를 향상시킨다. 금속-유기 구조체(MOF)를 사용하는 공중합체/IL 복합 막은 향상된 CO2 투과도를 보여주었다. 이 총설에서는 이온성 액체와 공중합체복합막의 다양한 조합에 따른 이산화탄소분리성능에 대한 상관관계를 논의한다.
        4,000원
        19.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.
        4,000원
        1 2 3 4 5