본 연구의 목적은 평발을 가진 여성 노인의 계단 하강 보행 시 일반인솔 및 아치 지지형 인솔을 적용에 따른 족저압력 및 압력중심점 변인들의 차이를 조사하는데 목적이 있다. 족저압력 분석장비(Pedar-X, Novel, Germany)를 사용하여 14명의 평발 노인을 대상으로 3종류(일반인솔, A형 인솔, B형 인솔)의 인솔착용 후 최대족저압력, 평균족저압력, 접촉면적, 압력중심점의 이동거리, 변위 및 최대범위의 평균값을 산출하였으며, 일원변량분석(one-way ANOVA)를 이용하여 인솔 종류간 평균을 비교하였다. 족저압력 변인 중 최대족저압력은 중족부의 M3, 평균족저압력은 M2, M3, M4 영역에서, 접촉면적은 M2, M3, 그리고 M6 영역에서 통계적으로 유의한 차이를 보였으며, 압력중심점 변인 중 전후축과 좌우축에서 압력중심점의 이동거리에서 통계적으로 유의한 차이를 보였다. 족저압력 평가결과 아치 지지 기능을 가진 인솔을 삽입한 A와 B형 인솔에서 족궁지지 영역인 M3의 최대압력은 B형 인솔과 A형 인솔이 일반인솔과 비교했을 때 높게 나타났다. 좌우축, 전후축 압력중심점의 이동거리는 A형과 B형 인솔 모두 일반 인솔에 비해 짧게 나타났다.
본 연구의 목적은 충격흡수 및 통기기능 인솔을 적용한 개발 전투화의 족저압력 및 온도변화를 연구하는데 있다. 남성 피험자 11명(age: 21.8±2.2 yrs, height: 174.3±3.6 cm, weight: 71.6±8.6 kg, foot length: 261.0±1.0 mm)을 대상으로 총 3종류 전투화의 족저압력 및 온도 변화를 비교하였다: 전투화 A(보급형 일반 전투화), 전투화 B(통기구가 적용된 개발 전투화), 전투화 C(전투화 B에 통기기능 및 충 격흡수용 인솔 적용). 족저압력 측정을 위해 Pedar-X를 사용하였고, 전투화의 내부온도는 휴대용 써미스터의 온도센서를 사용하였다. 전투화의 종류별 족저압력 및 온도 변화결과를 비교하기 위해 일원변량분석 (one-way ANOVA)을 실시한 결과, 첫째, 족저압력 변인에서, 기능성 인솔을 적용한 전투화 C가 전투화 A보다 오른발/왼발 후족부의 최대족저압력에서 통계적으로 유의하게 낮았으며, 전투화 C가 전투화 B보다 왼발 후족부의 평균족저압력에서 통계적으로 유의하게 낮은 압력을 나타내었다. 둘째, 내부온도에서 보행 시작 후 40분경과 시점부터 개발 전투화인 B, C가 일반 전투화인 A보다 낮은 내부 온도를 보였다.
This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flatfooted and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects’ 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.
본 연구는 감정노동의 연구대상을 좀 더 다양한 산업으로 확대할 필요성이 있어 지금까지 연구되지 않았던 철도여행인솔자 288명을 대상으로 이들의 감정노동을 내면행동과 표면행동으로 구분하여 부정적결과인 감정부조화와 긍정적 결과인 직무만족에 각각 어떠한 영향을 미치는지를 분석하고, 감정노동과 직무만족과의 관계에서 감정부조화의 매개효과와 감정노동과 감정부조화의 관계에서 감정표현규범몰입의 조절효과를 실증 분석하였다. 분석결과를 요약하면 다음과 같다. 우선, 철도여행인솔자의 내면행동은 감정부조화에 부(-)의 영향을, 표면행동은 정(+)의 영향을 미치는 것으로 나타났다. 둘째, 직무만족에 미치는 영향을 분석한 결과, 내면행동은 정(+)의 영향을, 표면행동은 부(-)의 영향을 미치는 것으로 나타났다. 셋째, 감정부조화는 직무만족에 부(-)의 영향을 미치는 것으로 나타났다. 넷째, 감정부조화의 매개효과를 분석한 결과 내면행동과 표면행동 모두 감정부조화를 부분매개하여 직무만족에 유의한 영향을 미치는 것으로 나타났다. 마지막으로 감정표현규범몰입의 조절효과를 분석한 결과, 감정표현규범몰입은 내면행동으로 인한 감정부조화에는 유의한 조절효과를 보이지 않았으나, 표면행동으로 인한 감정부조화는 감소시키는 것으로 나타났다. 이와 같은 연구 결과를 바탕으로 이론적 및 실무적 시사점을 도출하였으며, 향후 연구방향을 제시하였다.
The purpose of this study was to investigate the effect of high heeled shoes with the total contact insert (TCI) on the frontal plane of the joints for the lower extremity during the gait. Ten healthy females voluntarily participated in this study and the height of the high heeled shoes was 7 cm. A three-dimensional motion analysis system (VICON) and force plates were used to analyze the movements of the joints for the lower extremities. The results were as follows: There were no significant differences for the angle value on the event of the gait cycle in the maximum eversion and inversion of the ankle joint, the varus and valgus of the knee joint, and the adduction and abduction of the hip joint (p>.05). But, there was a significant difference or the range of motion in the ankle joint (p<.05). The value of ankle and knee moment with a TCI was less than the value for no TCI. And there were significant differences for the moment value of the maximum inversion and eversion on the ankle joint and for the maximum varus and valgus on the knee joint (p<.05). Therefore, a TCI would be effective in stabilizing the joints of the lower extremities and increasing the balance of a body to reduce the injure from a fall during the gait.
This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.
In many manufacturing occupations, industrial workers reported foot or lower leg problems such as discomfort, pain or orthopedic deformities. This study investigated the effects of two different working conditions upon assembly worker's perception of discomfort and foot pain associated with various body parts. Twenty-three male volunteers performed work in the factory. Ergonomic intervention has been to modify the flooring in an attempt to alleviate the problems associated with constrained standing and walking work. The worker's standing conditions consisted of standing on a hard floor while wearing shoe insoles. Questions were asked regarding body discomfort and foot pain. Significant differences in body discomfort and foot pain were found when comparing the overall effects of wearing shoe insoles on a hard floor (p<.05). This investigation indicated that shoe insoles reduced body discomfort and foot pain (p<.05).
The purpose of this study was to investigate the effects of visual information and different elevations of medially wedged insoles on the proprioceptive sense of the knee joint. The subjects of this study were 16 able-bodied men who were not athletic. An electrogoniometer was used to determine the error value between calculated 50% of full flexion (target position) and performed 50% of full flexion in a standing position with the upper extremities crossed. Tests were randomly performed in conditions. Visual variations included open eyes vs. closed eyes, while the elevation was adjusted through the use (or lack thereof) of medially wedged insoles of 10 mm, 14 mm, and 18 mm. The average error value in each condition was statistically analyzed. The findings of this study revealed as follows: 1) The average error value was significantly higher with the subjects' eyes open than with their eyes closed (p<.05). 2) The averaged error value was also significantly higher when the subjects were elevated 18 mm than with no elevation at all (p<.05). The findings of this study should be considered in lower extremity rehabilitation programs when medially wedged insoles used.
The purpose of this study was to identify the influence of wedged insole and foot progression angle (FPG) on lateral thrust of knee in healthy subjects. Fifteen healthy male subjects were recruited from Suncheon First College, in Suncheon. The subjects randomly walked at the comfortable velocity under five conditions: bare footed, medio-lateral wedged insoles, toe-in and toe-out gait. The lateral thrust was measured by a accelerometer with telemeter during walking. Data was collected while each subject walked for about 10 gait cycle on a flat, level walkway at their normal speed. The middle three gait cycle were used for averaged peak value of lateral acceleration. The three averaged peak value of lateral acceleration were collected under each condition at heel strike. The results showed that averaged peak value of lateral acceleration increased significantly in medial wedged insole and toe-in gait and decreased significantly in lateral wedged insole and toe-out gait as compared with bare footed (p<.05). These results suggest that wedged insole as well as walking strategy, such as foot progression angle, may prevent progression of degenerative knee osteoarthritis.
The purpose of this study was to assess the effect of applied insole types to lower extremities muscle fatigue during treadmill exercise. The control group and each different insole type group consisted of ten healthy male subjects. In the control group and each different insole type (soft type; 10 shore, semi-rigid type; 33 shore, rigid type; 50 shore) treadmill exercise was performed in twenty-five minutes. The electromyography (EMG) signals of four muscle (tibialis anterior, gastrocnemius medialis, rectus femoris, biceps femoris) were recording at sampling rate of 1024 Hz during treadmill exercise. The localized muscle fatigue (LMF) can be investigated using power spectral analysis. When did data analysis that excepted initial five minutes. The raw EMG signals was processed using the fast Fourier Transformation (FFT) and the median power frequency value was determined in initial ten second period and in last ten second period. Fatigue index was calculated and collected data were statistically analyzed by SPSS version 10.0 two-way using analysis of variance (ANOVA) with repeated measures () was used to determine the main effect and interaction. Post hoc was performed with least significant difference. A level of significance was .05. Muscles fatigue index were significantly decreased in insole types (p<.05) and not significantly different in muscle (p>.05). Post hoc analysis shows that fatigue index in soft insole type, semi-rigid insole type and rigid insole type were lower than that control group (p=.028, p=.146, p=.095). There were no interaction between insole type and muscles (p>.05). The finding of this study can be used as a fundamental data when insole is applied and insole can be used to decreased of a fatigue during the dynamic exercise.