검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 26

        1.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        입자 복합재료는 입자의 형상, 크기 그리고 분포의 산포특성으로 인해 물성치의 편차가 존재하고, 입자 복합재료를 사용 한 시스템의 거동 또한 산포가 존재한다. 하지만 입자의 산포특성을 고려하기 어려우므로 균질화법을 사용하여 시스템의 거 동을 해석하거나 국부영역에서 미세구조를 적용하여 해석한다. 본 연구에서는 입자의 랜덤적 산포특성을 고려하기 위해 RMDFs(random morphology description functions)를 사용하여 랜덤 미세구조를 생성하였고, 단면 1차 모멘트를 사용하여 가우시안 함수의 수(N)와 입자의 산포특성의 관계를 분석하였다. 그리고 랜덤 미세구조 구조물의 거동을 분석하기 위하여 랜덤 미세구조를 전체에 반영한 외팔보에 multi-scale 해석을 수행하였다. 그 결과 입자의 산포특성과 외팔보의 처짐의 편차 는 N의 증가에 따라 감소하고 N=200에서 수렴하는 것을 확인하였다.
        4,000원
        2.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range 0°C and –10°C. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of GIC decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.
        4,000원
        3.
        2014.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.
        4,000원
        4.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.
        4,000원
        5.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than 20μm in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.
        4,000원
        6.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pressureless sintering behavior of /Cu powder mixtures, prepared from /CuO and /Cu-nitrate, has been investigated. Microstructural observation revealed that powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at for 4 min using infrared heating furnace with the heating rate of /min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in /MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 , compared with monolithic . The mechanical properties were discussed in terms of microstructural characteristics
        4,000원
        7.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, Zr-base metallic glass(MG)/diamond composites are fabricated using a combination of gas-atomization and spark plasma sintering (SPS). The densification behaviors of mixtures of soft MG and hard diamond powders during consolidation process are investigated. The influence of mixture characteristics on the densification is discussed and several mechanism explaining the influence of diamond particles on consolidation behaviour are proposed. The experimental results show that consolidation is enhanced with increasing diamond/Metallic Glass(MG) size ratio, while the diamond fraction is fixed.
        4,000원
        8.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 입자강화 복합재료(particle-reinforced composites)의 거동을 예측하기 위하여 Lee and Pyo(2007)에 의해 제안된 계면손상을 고려한 복합재료의 미세역학 탄성모델과 Karihaloo and Fu(1989)의 미세균열 생성모델을 결합하여, 보강입자의 계면손상(imperfect interface)과 기지 내 미세균열을 고려하여 탄성구성모델(constitutive model)의 거동해석을 수행하였다. 제안된 탄성구성모델의 적용성 검증과 주요손상변수가 거동예측에 미치는 영향을 알아보기 위해 일축 하중 하에서의 응력-변형률 관계를 수치적으로 나타내었다. 또한, 기존의 관련 실험결과와 본 해석결과와의 비교를 통하여 제안된 모델의 정확도를 검증하였다.
        4,000원
        9.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of hot-pressed composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at , showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.
        4,000원
        10.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The particle reinforced composite fabricated by a powder-in sheath rolling (PSR) method was severely. deformed by the accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubricant. The ARBed composite exhibited an ulbricant. grained structure similar to the other ARBed bulky materials. Tensile strength of the composite increased gradually with the number of ARB cycles, but from the 6th cycle it rather decreased slightly. These characteristics of the composite were somewhat different from those of Al powder compact fabricated by the same procedures. The difference in microstructure and mechanical properties between Al powder compact and the composite was discussed
        4,000원
        13.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical and thermal conductivity of W-Cu composites were investigated as a function of the W-particle size and W-W contiguity. Powder mixtures were prepared by ball milling or mechanical alloying process, and then sintered at various temperatures. The electrical conductivity of sintered composite was increased with decreasing W grain size. Dependence of electrical conductivity on the W grain size was explained by the W-W contiguity concept. The thermal conductivity was increased with increasing the temperature up to but decreased at the temperature above Also, thermal conductivity value was influenced by the W particle size. Change of thermal conductivity in W-Cu composites was discussed based on the observed microstructural characteristics and theoretical considerations.
        4,000원
        16.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and properties of composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of /Ni-Fe alloy were prepared by the solution-chemistry route using , and powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics
        4,000원
        18.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al2O3SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3SiC particle was applied to 2024Al/(Al2O3SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3SiC partticle by SHS process were described. The influence of the Al2O3SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 m and most of the particle was smaller than 2m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.
        4,000원
        20.
        1998.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 기지개와 미시구멍으로 구성된 복합재료에 입자보강 복합재료의 등가 재료상수 예측기법인 평균장 근사이론과 등가원리를 적용하여 위상 최적화에 필요한 등가 재료상수와 설계변수와의 상관관계식을 유도하였다. 또한, 유도된 관계식에 중간값을 갖는 설계변수의 수를 줄이기 위하여 벌칙인자를 도입하였다. 그리고 본 연구의 타당성을 검증하기 위하여 벌칙인자가 도입된 위상 최적화문제를 순차이차계획법인 PLBA 알고리즘을 이용하여 해석하였다.
        4,000원
        1 2