검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2024.10 구독 인증기관·개인회원 무료
        일반 가열 아스팔트 혼합물 생산 시 높은 온도로 이산화탄소 및 대기오염물질이 발생함으로써, 유럽 및 선진국들은 탄소배출 저감 이 가능한 중온 아스팔트(warm mix asphalt, WMA)를 사용하는 추세이다. 아스팔트 콘크리트의 생산온도를 낮출수록 이산화탄소 발생 량과 연료 소비량을 저감시킬 수 있어 중온 아스팔트 콘크리트에 대한 수요성은 증가하고 있으나 국내외로 중온 아스팔트 콘크리트의 생산온도는 120℃의 한계성을 극복하지 못하고 있는 실정으로 120℃ 이하의 생산기술을 확보하기 위해서는 기능성 개질재 제조기술 개발이 필요하다. 본 연구에서는 110±10℃의 생산온도에서 저온화 고분자형 개질재를 첨가하여 폴리머 개질 저온 아스팔트(Polymer Cool Mix Asphalt, PCMA)를 생산하였으며, PCMA 혼합물의 마샬안정도, 공극률, 동적안정도 및 인장강도비 등을 시험 평가하여 10년 이상의 공용 내구연한 확보를 확인하였다. 또한, 일반 가열 아스팔트 혼합물, 타사 중온화 첨가제를 적용한 아스팔트 혼합물 및 PCMA 혼합물의 비교평가를 실시하였으며 PCMA 혼합물의 피로균열지수(Cracking Tolerance Index) 및 노화계수(Aging Coefficient)가 비교적 매우 우수한 것으로 나타났다. 2024년 8월, 베트남 바리어붕따우성에서 PCMA 혼합물 생산 및 시공을 실시한 결과, 목표 생산온도인 110±10℃의 조건을 확보하였으며, 현장 포설시에도 특이사항 없이 시공이 완료되었다.
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The evaluation of the low-temperature performance of an asphalt mixture is crucial for mitigating transverse thermal cracking and preventing traffic accidents on expressways. Engineers in pavement agencies must identify and verify the pavement sections that require urgent management. In early 2000, the research division of the Korea Expressway Corporation developed a three-dimensional (3D) pavement condition monitoring profiler vehicle (3DPM) and an advanced infographic (AIG) highway pavement management system computer program. Owing to these efforts, the management of the entire expressway network has become more precise, effective, and efficient. However, current 3DPM and AIG technologies focus only on the pavement surface and not on the entire pavement layer. Over the years, along with monitoring, further strengthening and verification of the feasibility of current 3DPM and AIG technologies by performing extensive mechanical tests and data analyses have been recommended. METHODS : First, the pavement section that required urgent care was selected using the 3DPM and AIG approaches. Second, asphalt mixture cores were acquired from the specified section, and a low-temperature fracture test, semi- circular bending (SCB) test, was performed. The mechanical parameters, energy-release rate, and fracture toughness were computed and compared. RESULTS : As expected, the asphalt mixture cores acquired from the specified pavement section ( poor condition – bad section) exhibited negative fracture performances compared to the control section (good section). CONCLUSIONS : The current 3DPM and AIG approaches in KEC can successfully evaluate and analyze selected pavement conditions. However, more extensive experimental studies and mathematical analyses are required to further strengthen and upgrade current pavement analysis approaches.
        4,000원
        5.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
        4,000원
        6.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Owing to industrial development, the occurrence of continuous environmental damage such as abnormal weather is accelerating because of a rapid increase in carbon emissions. Therefore, various efforts are expended worldwide to realize a low-carbon ecofriendly society. In the construction industry, various efforts have been realized to reduce environmental pollution such as greenhouse gas emissions, for example by introducing eco-friendly materials and reducing industrial waste. In this study, an asphalt pavement technology that can reduce production and construction temperatures by more than 60 °C is developed to reduce the amount of carbon generated in the asphalt industry. METHODS : The performance of a half-warm asphalt binder developed using thermoplastic elastomers and low-temperature additives was assessed. In addition, the change in the quality of a mixture due to the use of the half-warm asphalt binder was evaluated. RESULTS : As the amount of thermoplastic elastomer used increases, the performance grade of the asphalt binder increases as well. When 3% or more of the elastomer is incorporated, the target performance grade of the asphalt binder is satisfied. In addition, by incorporating the thermoplastic elastomer and a low-temperature additive, the overall moisture and rutting resistance increased even at relatively low production and compaction temperatures. CONCLUSIONS : Additional measures to stabilize quality and improve economic feasibility will present a new paradigm for investigations into eco-friendly asphalt concrete pavements.
        4,000원
        7.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : It is well known that low temperature cracking is one of the most serious distresses on asphalt pavement, especially for northern U.S. (including Alaska), Canada and the northern part of south Korea. The risk of thermal cracking can be numerically measured by estimating thermal stress of a given asphalt mixture. This thermal stress can be computed by low temperature creep testing. Currently, in-direct tensile (IDT) mixture creep test mentioned in AASHTO specification is used for measuring low temperature creep properties of a given asphalt mixture. However, IDT requires the use of expensive testing equipment for performing the sophisticated analysis process, however, very few laboratories utilize this equipment. In this paper, a new and simple performance test (SPT) method: bending beam rheometer (BBR) mixture creep testing equipment is introduced, and the estimated experimental results were compared with those of conventional IDT tests. METHODS: Three different asphalt mixtures containing reclaimed asphalt pavement (RAP) and roofing shingles were prepared in the Korea Expressway Corporation (KEC) research laboratory. Using the BBR and IDT, the low temperature creep stiffness data were measured and subsequently computed. Using a simple power-law function, the creep stiffness data were converted into relaxation modulus, and subsequently compared. Finally, thermal stress results were computed from relaxation modulus master curve using Gaussian quadrature approach with condierations of 24 Gauss number. RESULTS: In the case of the conventional asphalt mixture, similar trends were observed when the relaxation modulus and thermal stress results were compared. In the case of RAP and Shingle added mixtures, relatively different computation results were obtained. It can be estimated that different experimental surroundings and specimen sizes affected the results. CONCLUSIONS: It can be said that the BBR mixture creep test can be a more viable approach for measuring low temperature properties of asphalt mixture compared to expensive and complex IDT testing methods. However, more extensive research and analysis are required to further verify the feasibility of the BBR mixture creep test.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Using recyclable materials in asphalt pavement industry is one of the essential tasks not only for saving construction budgets but also for mitigating environmental pollutions. Over the past decades, several efforts have been made by road maintenance agencies to incorporate various recyclable materials into virgin asphalt paving mixtures. As a result, reclaimed asphalt pavement (RAP), which consists of old pavement material was selected as one of most widely used recyclable materials. In this paper, the effects of using different amounts of single-recycled RAP (SRRAP) and double-recycled RAP (DRRAP) on the low-temperature characteristics of asphalt mixtures were investigated. METHODS: To evaluate the low-temperature characteristics of SRRAP and DRRAP mixtures, two experiments, the bending beam mixture creep test and semicircular bending fracture test were performed. The experimental parameters: creep stiffness, m-value, thermal stress, critical cracking temperature, fracture energy, and fracture toughness were computed then compared. RESULTS : RAP mixtures (SRRAP or DRRAP) showed lower mechanical performance compared with conventional asphalt mixtures. The differences became distinct with increased RAP addition. However, the performance differences between SRRAP and DRRAP mixtures were not significant in all cases, which indicate the possible application of re-recycling technology (DRRAP) in the asphalt pavement industry. CONCLUSIONS : The addition of RAP to virgin asphalt can mitigate low-temperature performance despite the improvement in fracture performance observed in some cases. Therefore, using RAP (SRRAP or DRRAP) mixtures on inter or sublayer construction, but not on the surface layer, is recommended. Moreover, the possibility of applying double-recycling technology in asphalt pavement industry can be introduced in this study because not significant performance differences were found between SRRAP and DRRAP mixtures especially at low temperature.
        4,000원
        9.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Thermal cracking (also called low-temperature cracking) is a serious stress for asphalt pavement, especially in eastern South Korea, the northern USA, and Canada. Thermal cracking occurs when the level of thermal stress exceeds the corresponding level of low temperature strength of the given asphalt materials. Therefore, computation of thermal stress is a key factor for understanding, quantifying, and evaluating the level of low-temperature cracking resistance of asphalt pavement. In this paper, two different approaches for computing thermal stress on asphalt binder were introduced: Hopkins and Hamming’s algorithm (1967) and the application of a simple power-law function. All the computed results were compared visually; then the findings and recommendations were discussed. METHODS: Thermal stress of the tested asphalt binder was computed based on the methodology introduced in previous literatures related to viscoelastic theory. To perform the numerical analysis, MATLABTM 2D matrix-correlation and Microsoft Excel visual basic code were developed and used for the function fitting and value-minimization processes, respectively. RESULTS : Different results from thermal stress were observed with application of different computation approaches. This variation of the data trends could be recognized not only visually but also statistically. CONCLUSIONS: It can be concluded that these two different computation approaches can successfully provide upper and lower limits (i.e. boundaries) for thermal stress prediction of a given asphalt binder. Based on these findings, more reliable and reasonable thermal stress results could be provided and finally, better pavement performance predictions could also be expected.
        4,000원
        10.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This research is to evaluate the mechanical performance of different types of Hot Mix Asphalt (HMA) pavement cells prepared for MN/Road field testing section through an extensive experimental analysis of air voids and simple statistical evaluation tools (i.e. hypothesis test). METHODS: An extensive experimental work was performed to measure air voids in 82 asphalt mixture cores (238 samples in total) obtained from nine different types of road cell located in MN/Road testing field. In order to numerically and quantitatively address the differences in air voids among the different test Cells built in MN/Road, a simple statistical test method (i.e. t-test) with 5% significance was used. RESULTS: Similar trends in air voids content were found among the mixtures including conventional HMA, Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) combined with taconite aggregate this provides support to the use of RAP and WMA technology in the constructions of asphalt pavement. However, in case of acid modified HMA mixtures, significant differences in air void content were observed between on the wheel path and between wheel path location, which implies negative performances in rutting and thermal cracking resistances. Conclusions : It can be concluded that use of RAP and WMA technology in the construction of conventional asphalt pavement and the use of PPA (Poly Phosphoric Acid) in combinations with SBS (Styrene Butadiene Styrene) in asphalt binder production provide satisfactory performance and, therefore, are highly recommended
        4,300원
        16.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 상온상태의 폐아스팔트 포장재료를 가열재활용하여 기층용뿐만 아니라 표층용으로 활용함에 있어 재생 아스팔트 바인더의 특성을 연구한 것이다. 4종류의 RAP을 가지고 RAP 자체의 기본 물성을 시험하였다. 배합설계는 표층에는 RAP을 10, 20%를 첨가하였고, 기층에는 10. 20, 30%를 첨가하였다. 재생혼합물의 신규바인더로는 AC 60-80을 선정하였다. 침입도, 점도, GPC, TFO. 저온균열 저항성을 평가하기 위한 BBR 실험을 수행하였다. 절대점도와 GPC에서의 대형입도분자(LMS)를 지수함수 회귀분석을 통해 R2이 0.95 이상이었고 이것은 절대점도 추정에 GPC 결과가 상당히 정확함을 시사해주고 있다. RAP을 첨가한 재생 아스팔트 바인더의 PG 저온 등급은 일반 신규 바인더에 비해 한 단계 높은 등급을 나타내므로 저온균열에 대한 저항성은 약간 약한 것으로 나타났다.
        4,300원
        19.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 동절기에 많이 발생하는 포장의 저온균열에 대한 폴리머 개질 아스팔트 혼합물의 저항 특성을 알아보기 위하여 수행하였다. 저온에서의 간접인장강도를 측정 분석한 결과 혼합물들이 -10°C ~ -20°C의 저온 대에서 최대 인장강도를 나타냈다. 최대 인장강도를 보이는 온도 이하에서는 시차열 응력이 인장강도 이상으로 발생하여 내부에 손상이 발생하기 때문에 나타나는 인장강도 저하현상을 ITS 시험으로 증명하여 보였다. 저온의 시험 결과는 폴리머 개질 아스팔트 혼합물이 일반 아스팔트 혼합물에 비하여 보다 낮은 온도에서까지도 강도가 높게 나타나 폴리머 개질에 따른 효과를 보였으며, 바인더가 저온균열에 대한 저항에 큰 영향을 미치는 것으로 나타났다. 따라서 추운 지역에서는 저온균열을 예방하기 위하여 폴리머 개질 아스팔트의 사용이 추천된다.
        4,000원
        20.
        2002.09 구독 인증기관 무료, 개인회원 유료
        본 연구는 동절기에 많이 발생하는 포장의 저온균열에 대한 폴리머 개질 아스팔트 혼합물의 저항 특성을 알아보기 위하여 수행하였다. 저온에서의 간접인장강도를 측정 분석한 결과 혼합물들이 -10℃의 저온 대에서 최대 인장강도를 나타냈다. 최대 인장강도를 보이는 온도 이하에서는 시차열 응력이 인장강도 이상으로 발생하여 내부에 손상이 발생하기 때문에 나타나는 인장강도 저하현상을 ITS 시험으로 증명하여 보였다. 저온의 시험 결과는 폴리머 개질 아스팔트 혼합물이 일반 아스팔트 혼합물에 비하여 보다 낮은 온도에서까지도 강도가 높게 나타나 폴리머 개질에 따른 효과를 보였으며, 바인더가 저온균열에 대한 저항에 큰 영향을 미치는 것으로 나타났다. 따라서 추운 지역에서는 저온균열을 예방하기 위하여 폴리머 개질 아스팔트의 사용이 추천된다.
        4,000원
        1 2