해운 산업은 탄소 배출 저감을 위한 다양한 기술적 해결책을 모색하고 있으며, 그중 암모니아(NH3)는 차세대 무탄소 연료로 각 광받고 있다. 암모니아는 이산화탄소(CO2)를 배출하지 않으며, 기존 인프라를 활용해 대규모 운송 및 저장이 가능하다는 장점이 있다. 본 연구는 암모니아를 수소(H2)로 개질하여 연료전지에 공급하고, 이를 통해 전력을 생산하는 하이브리드 전기 추진 시스템의 성능을 평가하 였다. 암모니아-수소 개질기, 수소 연료전지, 배터리로 구성된 이 시스템은 친환경적인 추진 방식이다. 경사 시험(Heel test)은 선박이 실제 항해 중에 겪을 수 있는 10도 경사 상황에서 시스템이 안정적으로 작동하는 평가하기 위해 수행되었다. 시험 결과, 암모니아 개질기는 경사 조건에서도 안정적으로 수소를 생산하였다. 연료전지와 배터리가 결합된 하이브리드 시스템은 부하 변동 상황에서도 효율적으로 전력을 관리하고 안정적인 전력 공급을 유지했다. 특히 경사 상태에서도 시스템 성능 저하 없이 연료전지와 배터리 전력, 전류, 전압의 상호작용이 원활하게 이루어졌음을 확인할 수 있다. 본 연구는 향후 친환경 선박의 핵심 기술로 자리 잡을 수 있는 암모니아 기반 추진 시스템의 안정 성과 성능을 실험적으로 검증하였다는 점에서 그 의미가 있으며, 따라서 본 연구 결과는 해운 산업에서 암모니아 기반 추진 시스템의 사용 화 가능성을 높이는 중요한 기초 자료를 제공할 것으로 기대된다.
국제적으로 선박의 온실가스 배출 감소 요구가 증가함에 따라 어선에서의 탄소배출량 저감 역시 중요한 과제가 되었다. 특 히 2023년 기준 국내의 어선 64,233척 중 60,272척이 총톤수 10톤 미만의 소형어선인 점을 고려할 때, 전기추진설비의 안전한 소형어선 적용을 위한 법제 정비가 필요하다. 본 연구는 노르웨이 해사청의 소형 선박 배터리 시스템 안전 규정을 검토하고 국내의 기준인 「전 기추진 선박기준」과 어떠한 차이점이 있는지를 비교·분석하였으며, 이러한 연구를 통해 열폭주 확산 시험의 강화와 절연 성능이 인증 된 냉각수의 사용, 배터리실 내의 배관과 소화전, 환기설비에 대한 각종 요건과 소화설비의 해수 사용을 금지하는 요건 등 소형어선에 서의 안전한 배터리시스템 사용을 위한 관련 법령의 정비 방안을 제안하였다.
국내외 매년 지속적으로 증가하는 대기오염의 상당량이 선박에서 배출되고 있으며, 이러한 선박에서의 배출량을 감축하기 위 해 정부는 환경규제를 강화하고 해양대기환경 개선을 위해 「환경친화적 선박의 개발 및 보급 촉진에 관한 법률」을 제정 및 시행하여 친환경 에너지를 동력원으로 사용하는 환경친화적 선박을 보급하여 해양오염 저감 기술이 개발되도록 하고 있다. 환경친화적 선박의 기 술은 최근 순수 전기추진 내지는 전기복합 추진체계까지 진화하고 있으나, 선박의 안전한 운용을 위한 검사 및 설비기준 등 관련제도의 정비는 이를 못 따라가는 실정으로, 특히 국내 연안선박의 다수를 차지하는 어선에 대한 제도는 정비가 시급한 시점이다. 이번 연구를 통 해 어선에의 전기복합 추진체계 등의 적용을 위해 핵심기자재인 배터리, 전력변환장치 등을 정의하고 이에 필요한 안전기준을 진단, 마련 하여 친환경 어선의 도입과 보급을 위해 관련된 산업을 지원할 수 있도록 최소한의 안전기준안을 마련하고자 한다.
세계적으로 온실가스 및 대기 오염물질 배출 저감을 위한 환경 규제가 점점 강화되고 있는 가운데, 국내에서도 ‘2030 친환경 관공선 전환 계획’을 수립하여 선박의 온실가스 배출량 저감 기술 개발과 친환경 소형 연안선박 건조 및 실증 사업을 추진하고 있다. 이에 따라 본 연구에서는 연안 선박의 전기복합 추진을 위한 핵심 기자재인 기어박스의 설계에 대한 연구를 수행하였다. ROMAX 소프트웨어를 활용하여 전동기 구동, 엔진 구동, 엔진 구동 발전 등 다양한 운전 모드에서 기어의 강도와 치물림 상태를 확인하고, 치형 수정 최적화를 수행하였다. 또한 위상 최적화 기법을 이용하여 기어박스 하우징의 경량화 및 최적화를 수행하였다.
This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.