In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
The electrochemical type gas sensor has the advantage of being easy to use due its small size, and it is also relatively inexpensive. However, its output can easily vary depending on temperature and humidity conditions. Therefore, it is important to ascertain the exact output characteristics of a sensor according to the measuring environment in order to improve measurement accuracy for any set of given conditions. The purpose of this study is to obtain basic information about the output characteristics of a sensor that is used both indoor and outdoor according to the variation in temperature and humidity conditions in order to improve the accuracy of the sensor. To achieve this result, a calibration curve was made using ammonia standard gas and the calibration factor was calculated using the calibration curve and the measuring accuracy was confirmed with regard to the ammonia sensor. Based on the test results, the variation of the sensor output value was large in relation to temperature and humidity variation. It was found that the output value from the sensor at higher temperature and humidity conditions was also higher. However, the measuring accuracy of the sensor could be improved by more than 10% by applying the calibration factor and an average accuracy of more than 97% could be achieved. It is anticipated that the result of this study can be used as basic data to obtain more accurate results using electrochemical sensors for a given set of temperature and humidity conditions, and therefore, it can also be considered that the reliability and applicability of electrochemical sensors can be improved.
This study was carried out to investigate the response characteristics of a hydrogen sulfide electrochemical gassensor for several wastewater odors. At first, it was found that bubbling sampling method was superior toheadspace sampling method in terms of sensor sensitivity. High correlation between odor concentration and sensorresults was shown for two wastewater which were r=0.977 for food-waste recycling wastewater and r=0.997for food industry wastewater. On the other hand, no correlation (r=0.258) was found for plating wastewater,because hydrogen sulfide was not the main odorant for that.
This study was carried out to suggest a realtime evaluation system for the odor adsorption efficiency with electrochemical sensors. As the results of the experiments for the realtime evaluation system, the correlation coefficient between the sensor signals and the hydrogen sulfide concentration was relatively good, 0.9920 and 0.8340, respectively. The relative standard deviation of three replicative experiments for the adsorption amount in the conditions of 0.5 g and 1.0 g of adsorbent was 6.97% and 3.49%, respectively. This study would contribute the realtime evaluation of odor control efficiency to overcome the limitations of olfactory method and instrumental analysis in terms of cost and technology.
In this paper, the electrochemical non-enzyme immunosensor has been developed for the determination of salmonella antigen, using inverse voltammetry. For the estimation of salmonella antigen concentration, the nanoparticles synthesized by microemulsion method were conjugated with salmonella antigen. Then, the immunocomplex between antibody immobilized on the transducer surface and antigen containing a magnetic nanoparticles was formed. From the linear relationship between the reduction peak current of Fe(III) and salmonella antigen concentration, it is suggested that the electrochemical non-enzyme biosensor is applicable to detect salmonella antigen in the concentration range of