In this paper, we investigate the relationship between fuel injection quantity and voltage and current energy of Bosch system and Delphi system by measuring the high and low voltage waveform, current waveform, fuel injection quantity and fuel pressure of A and J-engines. Waveform measurements are made using the PICO scope and the CDS tester. The injectors of A and J engines were tested under no load condition using injector with normal fuel injection quantity, injector with small fuel injection quantity and injector with many fuel injection quantity. In case of normal injector, A-engine has higher fuel pressure, injection interval time, voltage energy, and current energy than J-engine. The current energy of the A-engine changed linearly compared to that of the J-engine. For over and under injectors, the change in the previous physical quantity was greater for the A-engine than for the J-engine. However, the duration time of maintaining to open the injector is controlled differently, and so the voltage and current energy values are changed, and the change of the current energy is larger than the voltage energy.
This study analyzed by measuring the voltage waveform of the injector intended for operating CRDI diesel vehicle. The cases of the EGR trouble and a EGR normal is considered.
1) The voltage waveform in the case of the normal and trouble, the difference between the maximum voltage was not large, decrease in the number of voltage gated pulses with the increase in engine speed, sustained current remained for this period.
2) The voltage waveform, comparing the case of the normal case and trouble, the size of the maximum voltage, no large change in gate pulse voltage is to be generated than in the case of a defective irregular longer opening time of the injector factor it was possible to know the bad influence on the fuel efficiency.
Abstract Dielectric barrier discharge (DBD) in air, which has been established for the production of large quantities of ozone, is more recently being applied to a wider range of aftertreatment processes for HAPs (hazardous air pollutants). Although DBD has high electron density and energy, its potential use as precharging nano and submicron sized particles, is not known. In this work, we measured V‐I (voltage‐current) characteristics of DBD and estimated the collection efficiency of particles with bimodal distribution by DBD type 2‐stage ESP (electrostatic precipitator). To examine the particle collection with various applied voltage waveforms of DBD, nano size particles of NaCl (20∼100 nm) and DOS (50∼800 nm) were generated by an electrical tube furnace and an atomizer, respectively. Particle collection efficiencies of all the cases increased with increase of DBD electric power that the results corresponded to product of V by I whose magnitudes were the largest in triangular voltage waveform.