We have developed superconducting mixer receivers for 129 GHz VLBI observation in Korean VLBI Network (KVN). The developed mixer has a radial waveguide probe with simple transmission line L-C transformer as a tuning circuit to its 5 series-connected junctions, which can have 125 - 165 GHz as the operation radio frequency (RF). For intermediate frequency (IF) signal path a high impedance quarter-wavelength line connects the probe to one end of symmetric RF chokes. The double side band (DSB) receiver noise of the mixer was about 40 K over 4 - 6 GHz IF band, whereas we achieved the uncorrected single side band (SSB) noise temperature of about 70 K and better than 10 dB image rejection ratio in 2SB configuration with 8 - 10 GHz IF band. Insert-type receiver cartridges employing the mixers have been under commission for KVN stations.
본 연구에서는 황소자리 분자운에 위치한 L1521F-IRS의 운동학적 특성을 알아보기 위하여 HCN(J=1-0) 분자선 을 이용한 전파관측을 수행하여 분석하였다. 약한 밝기의 천체에 대한 높은 공간 분해능 지도 관측을 위하여 미국 Tucson에 위치한 Arizona Radio Observatory 12 m 망원경을 이용하였으며, 대상의 주변을 충분히 포함할 수 있도록 5지점×5지점 광역관측모드로 관측대상의 중심을 포함한 3.7'×3.7' 영역을 관측하였다. HCN 분자선 적분 밝기 분포자료는 분자운핵 L1521F가 고밀도 환경에서 분자의 심각한 결핍 현상이 없이 중심에서 강한 밝기를 보여 주고 있음을 보았다. L1521F에서 발견된 적외선원의 위치를 기준으로 동쪽방향에는 청색비대칭 분광선이 서쪽에는 적색비대칭 분광선이 존재하고 이들의 분포가 기존의 적외선영상에서 나타난 고깔모양과 잘 일치하는 모습을 보이고 있는 것으로 보아 L1521F-IRS에서 나오는 가스 쌍극류의 존재를 확인 할 수 있었다.
We present results of a test-study of the large-scale survey using the multi-beam receiver system recently installed on the 14 m telescope at Taeduk Radio Astronomy Observatory (TRAO). We have tested several modes of mapping, and found suitable (time-saving) mapping parameters of 'ON-SOURCE' = 8, 'OFF-SOURCE' = 1 when using 'RPT' = 3 as a position-switching mode. We observed 504 spectra towards the NGC 7538, a star forming molecular cloud in the transition of J = 1 - 0 of 12CO . From the Outer Galaxy Survey database (Heyer et al., 1998) we obtained 504 spectra for the same region. We compared integrated intensities, line profiles of two databases, and found that they are consistent to each other. From the intensity ratio of these two databases we also found that the value of forward spillover scattering of the TRAO telescope system is 0.58.
In this paper, we describe the proposed KVN (Korean VLBI Network) clock system in order to make the observation of the VLBI effectively. In general, the GPS system is widely used for the time information in the single dish observation. In the case of VLBI observation, a very high precise frequency standard is needed to perform the observation in accordance with the observation frequency using the radio telescope with over 100km distance. The objective of the high precise clock system is to insert the time-tagging information to the observed data and to synchronize it with the same clock in overall equipments which used in station. The AHM (Active Hydrogen Maser) and clock system are basically used as a frequency standard equipments at VLBI station. This system is also adopted in KVN. The proposed KVN clock system at each station consists of the AHM, GPS time comparator, standard clock system, time distributor, and frequency standard distributor. The basic experiments were performed to check the AHM system specification and to verify the effectiveness of implemented KVN clock system. In this paper, we briefly introduce the KVN clock system configuration and experimental results.
On-The-Fly (OTF) observation method is developed for the efficient use of 6 M radio telescope at Seoul Radio Astronomy Observatory (SRAO). This technique, in which data and information of antenna position are recorded synchronously while driving a telescope regularly and rapidly across a field, provides more efficient use of telescope time and better calibration of the acquired data than the traditional point-to-point observation method does. For the realization of the method, we (1) added RT-Linux modules to the existing operating system, (2) replaced digital voltmeter with voltage-to-frequency converter, and (3) modified many SRAO observation programs. By observing Moon and G78.2+2.7 using this method and comparing them with previous observations, we verify the successful operation and efficiency of the OTF observation mode.
This paper is the research and development including the system design and the prototype system building of the 400MHz wide-band digital autocorrelation spectrometer system for radio astronomy observation, which will be used as back-end signal processing unit of the Dual channel SIS receiver at Taeduk Radio Astronomy Observatory. So in this paper, we performed development of the high speed digitizing sampler, the circular memory buffer, and the correlator module for the 400MHz wide-band digital autocorrelator. This developed system will be use at TRAO after the housing and some calibration.