PURPOSES : Recently, air pollution caused by particulate matter has been worsening. Among the substances generating particulate matter, NOx is the main precursor of particulate matter and is widely distributed in areas with a high volume of traffic. TiO2 has been used as a material for removing NOx through a chemical reaction as a photocatalyst. In this context, the reduction of NOx through TiO2 concrete is proposed. However, the research on the surface deterioration on the performance of TiO2 concrete is not documented yet. Therefore, the objective of this study was to evaluate the long-term durability and NOx removal efficiency of TiO2 concrete by considering the concrete surface deterioration.
METHODS : Freezing–thawing resistance test (KS F 2456) and scaling test (ASTM C 672) were performed to investigate the variation in the TiO2 penetration distribution and NOx removal efficiency of TiO2 concrete corresponding to surface deterioration. The long-term durability of TiO2 concrete was evaluated through an environmental resistance test and changes in TiO2 penetration depth and distribution characteristics. In addition, the NOx removal efficiency of TiO2 concrete was evaluated as surface deterioration occurs. RESULTS : As a result of the freeze–thawing resistance test, a relative dynamic elastic modulus of more than 80 % was detected. In addition, a TiO2 penetration depth of 0.3 mm, NOx removal efficiency of 11.2 %, and a 30 % of TiO2 surface prediction mass ratio were achieved after 300 cycles. As a result of visual observation of the scaling test, “0, no scaling” was secured. After 50 cycles of scaling test, the TiO2 penetration depth, NOx removal efficiency, and TiO2 surface prediction mass ratio were 0.3 mm, 36.3 %, and 63 %, respectively. Through the results of the environmental resistance test, the excellent long-term durability and NOx removal efficiency of TiO2 concrete were confirmed.
CONCLUSIONS : As a result of the experiment, long-term durability and NOx removal efficiency of TiO2 concrete were secured. The application of TiO2 concrete can be a good alternative with long-term performance and durability.
PURPOSES : NOx is a particle matter precursor that is harmful to humans. Various methods of removing NOx from the air have been developed. TiO2 and activated carbon are particularly useful materials for removing NOx, and the method is known as particulate matter precursor reduction. The removal of NOx using TiO2 requires sunlight for the photocatalytic reaction, whereas activated carbon absorbs NOx particles into its pores after contact with the atmosphere. The purpose of this study is to evaluate the NOx removal efficiency of TiO2 and activated carbon applied to concrete surfaces using the penetration method.
METHODS : Surface penetration agents, such as silane-siloxane and silicate, were used. Photocatalyst TiO2 and adsorbent activated carbons were selected as the materials for NOx removal. TiO2 used in this study was formed by crystal structures of anatase and rutile, and plant-type and coal-type materials were used for the activated carbon. Each surface penetration agent was mixed with each particulate matter sealer at a concentration ratio of 8:2, and the mixtures were sprayed onto the surface. The NOx removal efficiency was evaluated using NOx removal efficiency equipment fabricated in compliance with the ISO 22197-1 standard.
RESULTS : Anatase TiO2 showed a maximum NOx removal efficiency of 48% when 500 g/m² was applied. However, 500 g/m² of rutile TiO2 showed a NOx removal efficiency of up to 10%. When 700 g/m² of coal-based activated carbon and plant-based activated carbon was used, NOx removal efficiencies of up to 11% and 14%, respectively, were obtained.
CONCLUSIONS : Rutile TiO2, a coal-based activated carbon, and plant-based activated carbon have lower NOx removal efficiencies than anatase TiO2. A lower amount of anatase TiO2 (500 g/m²), compared to the other spraying volumes, yielded the most significant NOx removal efficiency under optimal conditions. Therefore, it is recommended that 500 g/m² of anatase TiO2 should be sprayed onto concrete structures to improve the economic and long-term performance of these structures.
Recently air pollution is becoming a global environment issue. Especially, the smoke from engines and boiler systems, which burn fossil fuels directly, is an extremely serious issue. For this reason, IMO is tightening regulations for the control of NOx and SOx. Therefore, in this study, the NOx reduction effect of emulsified oil mixed with 10% of water was tested after applying the emulsified oil to an industrial boiler burner using Bunker-C oil. The study showed that the exhaust gas oxygen concentration of emulsified oil was nearly 1.3% high and this was identified by the effect of dissolved oxygen contained in water. Also, based on the standard oxygen concentration(4%), the average and maximum NOx reduction rates were 28.53% and 30.23% respectively, which means the reduction efficiency was very high.
PURPOSES: In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide (TiO2), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of TiO2 is the reaction of solar photocatalysis. Therefore, TiO2 in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, TiO2 concretes are produced by replacement of TiO2 as a part of concrete binder. However, considerable portion of TiO2 in concrete cannot contact with the pollutant in the air and UV. Therefore, TiO2 penetration method using the surface penetration agents is attempted as an alternative in order to locate TiO2 to the surface of concrete structure. METHODS: This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various TiO2 application method such as mix with TiO2, surface spray(TiO2 penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of TiO2 concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS: The NOx removal efficiency of mix with TiO2 increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of TiO2 with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS: It was known that the TiO2 penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.
A three-dimensional photochemical air pollution model considered advection, dispersion, photochemical reactions, and precipitation processes was developed. The calculated results of meteorological observation clearly exhibited geographical effects of Gwangyang Bay, in which land and sea breezes, mount-valley winds and local circular winds occurred. The observed results of daytime NOx concentrations were slightly higher than the calculated NOx concentrations in Yosu industrial complex, Gwangyang iron mill, and container yard. Eventually, the calculated NOx results generally agreed well with the observed ones.