수영만 해역의 오염원 관리를 위해 유입되는 육상기인 오염물질의 체류특성을 분석하였다. 오염물질의 체류특성은 해수유동 모델과 입자추적 모델을 활용하여 분석하였다. 오염물질은 입자로 표현되며, 입자의 양과 오염물질량은 비례하도록 나타내었다. 체류특성은 각 오염원별로 부하량, 해역에서 체류하는 오염물질량, 부하량 대비 해역에 체류하는 오염물질량을 비교하여 분석하였다. 수영만 해역에 체류하고 있는 오염물질량을 오염원별 순으로 나타내면 수영하수처리장, 남부하수처리장, 수영강 등의 순이었다. 오염부하량이 적고 만 내측에서 멀어질수록 해역에 체류하는 오염물질량이 적었다. 오염원 중에서는 남부하수처리장에서 유입되는 부하량이 가장 많았다. 하지만, 유입 부하량 대비 해역에 체류하는 오염물질량은 수영만으로 유입되는 오염원 중 가장 낮은 값을 보였다. 이는, 해역의 특성과 각 오염원의 지형적인 특성에 따라 오염물질이 해역에 미치는 정도가 다르다는 것을 의미한다.
인터넷과 교통의 발달, 글로벌 금융과 문화의 확산은 전 세계적으로 이주의 증가를 가져왔고, 우리나라에서는 산업구조의 변화, 사회적 가치의 변화, 교육의 글로벌화를 경험하면서 외국인 이주자의 유입이 급격히 증가하였다. 최근 이주 연구는 이주자의 사회적 관계에 대한 공간스케일에 주목하는데, 이주자는 국경을 초월한 사회적 관계를 유지함과 동시에, 정착지의 사회문화에 착근되면서 로컬을 변화시키는 주체로서 주목받고 있다. 본 연구는 전국 시군구 및 서울시 동별 스케일에서 이주자 공간의 특성을 국적과 체류형태별로 구분하여 살펴보고자 한다. 이 연구의 결과에 의하면, 이주자는 국적과 체류유형별로 거주 공간의 차이를 보이고 있으며, 특정 장소를 점유하면서 사회적 자본을 발달시키고 이주자 공간을 만들고 있음을 알 수 있다. 아시아 이주자가 다수를 차지하는 단순직 노동이주자는 주요 공장지대 주변에 집중적으로 거주하고 있으며, 미국, 영국, 프랑스, 독일 및 호주와 같은 유럽계 이주자들은 용산구 일대에 집중적으로 거주하는 특성을 보인다. 교육이주자는 기존 자국민의 이주자가 집중된 지역에 거주하는 경향이 있는 것으로 나타났다. 여성이 다수인 결혼이주자는 대부분 도시에 거주하고 있는데, 결혼이주자들이 가장 많이 거주하는 곳은 한국계중국인이 밀집된 곳이거나 수도권 내 주요 공장지대이다. 본 연구는 이주자의 공간은 국적에 따라 차이가 나타날 뿐만 아니라 체류유형에 의해서도 차이가 나타남을 보여준다. 따라서 이주자를 민족이나 국가 단위로 동질화하여 설명하는 것은 문제가 있음을 보여준다.
수영만으로 유입되는 수영강수에 의한 하구의 물리적인 특성을 밝히기 위하여 1989년 5월부터 1990년 4월까지 월별로 관측된 염분 자료와 Officer(1977)가 제안한 식을 이용하여 담수량 및 그 체류 시간을 계산하였다. 그 결과, 수평적으로는 수영만의 동백섬을 기준으로 수영강과 접하고 있는 만 안쪽으로 저염화가 강하게 나타나고 연직적으로는 강 혼합과 부분 혼합의 특징이 나타났다. 그리고 수영강을 중심으로 광안리 쪽이 해운대쪽보다 높은 담수율을 나타내었다. 그리고 거리에 따른 담수율의 분포 특성을 알아보기 위하여 수영강에서 외해쪽으로 6개 정점에서 각각 계산한 담수율을 각각의 최대치로 나누어 계절별로 정규화한 결과 담수율이 지수함수적으로 감소하였다. 추계에는 정점C3를 기준으로 감소율이 다른 계절에 비해 현저히 떨어졌는데, 이것은 성층에 기인한 것으로 보인다. 그리고 앞에서 구한 담수율을 이용하여 수영강에서 유입되는 담수의 체류시간을 계산한 결과, 약 1.3일인 하계를 제외하고 나머지 계절은 약 10~15일 정도임이 밝혀져 하계가 다른 계절이 비하여 담수의 순환이 빠름을 알 수 있었다.
신재생에너지의 보급 확대로 인해 2001년 발전차액제도(FIT)에서 2012년 신재생에너지공급의무화제도(RPS)로 국내 신재생에너지 정책이 변화하였으며 이에 다양한 바이오매스 에너지원에 대한 활용방안이 검토 및 도입되고 있다. 바이오매스를 이용한 연료생산에는 선진기술개발이 요구되고 있으며, 최근 폐목재를 기반으로 한 Torrefaction 기술에 대한 연구가 활발히 진행되고 있다. 수분함량이 높고 발열량이 낮은 단독 폐바이오매스를 사용한 고형연료 생산 시, 투입되는 에너지 소비량이 높아 경제성이 낮으므로 발열량이 높은 폐바이오매스와 발열량이 낮은 폐바이오매스를 함께 사용한 혼합 폐바이오매스를 고형연료화함으로써 소요되는 에너지 소비량을 낮출 수 있다. 혼합 폐바이오매스를 이용한 Torrefaction을 통하여 고형연료 생산품질 기준에 적합한 적정 운전조건을 도출하는 것이 Scale-up 설계에서 중요하다. 본 연구에서는 Bench급 간접가열 로타리킬른 방식 Torrefaction reactor에서 폐목재 및 하수슬러지 혼합 폐바이오매스를 이용하여 반응온도 및 체류시간에 따른 고형연료 생산 특성을 조사하였다. 폐목재 단일 시료를 반탄화하여 고형연료 생산 시 발생되는 경제성 및 시료공급의 문제를 개선코자 하수슬러지를 혼합 후 공급하여 혼합 폐바이오매스를 제조하였으며 이를 활용하여 반탄화 고형연료를 생산하였다. Bench급 반탄화 시스템의 반응온도(230~270℃) 및 반응기 내 체류시간(20~40분) 변화에 따라 고체수율은 51~70wt%, 발열량은 5,420~6,070Kcal/kg (HHV 기준)로 고형연료가 생산되었다. 고형연료 수율은 반응온도가 증가할수록 고체수율이 감소하였으나 발열량 등 고형연료의 품질은 증가하여 기존 선행연구 된 실험실 규모의 연구 결과와 동일함을 알 수 있었다. 본 연구를 통한 운전조건에 따른 Torrefaction 결과를 포함하여 Pilot 급 Scale-up 설계인자로 활용하였다.
The concepts of residence time and flushing time can be used to explain the exchange and transport of water or materials in a coastal sea. The application of these transport time scales are widespread in biological, hydrological, and geochemical studies. The water quality of the system crucially depends on the residence time and flushing time of a particle in the system. In this study, the residence and flushing time in Gamak Bay were calculated using the numerical model, EFDC, which includes a particle tracking module. The average residence time was 55 days in the inner bay, and the flushing time for Gamak Bay was about 44.8 days, according to the simulation. This means that it takes about 2 months for land and aquaculture generated particles to be transported out of Gamak Bay, which can lead to substances accumulating in the bay. These results show the relationships between the transport time scale and physical the properties of the embayment. The findings of this study will improves understanding of the water and material transport processes in Gamak Bay and will be important when assessing the potential impact of coastal development on water quality conditions.