농업폐기물중 유기물이 상당부분인 축산폐기물(분뇨)는 하천의 수질악화, 호소의 부영양화 및 지하수오염 등의 자연환경오염의 주범중의 하나로 잘 알려져 있다. 그러나 축산폐기물은 그 처리방법에 따라서 환경오염을 줄일 뿐만 아니라, 적정공정을 통하여 퇴비화에 의한 자원화가 가능하다는 것은 이미 알려진 사실이다. 대체적으로 기초적이며 공통적인 부분에 관한 축산폐기물 처리시설 및 공정체계는 이미 제품화가 되어 가동중에 있고, 단지 지역적 특성이나 다양한 규모의 제약조건하에서 실행가능한 중소규모 시설에 관해서는 일련의 실험들을 통하여 개발ㆍ적응해 나가고 있는 추세라 할 수 있겠다.(중략)
In this study, the efficiency of the anaerobic co-digestion of three categories of rural organic waste (animal manure, slaughterhouse waste, and agricultural by-products) and different mixtures of them was investigated. In addition, the relationship between digestion efficiency and the carbon/nitrogen (C/N) ratio was also conducted. Five different mixtures of feedstock including animal manure as a control were estimated by the biochemical methane potential (BMP) test. The results indicate that the biodegradability of the feedstock mixtures was in the range of 62 ~ 75%, which was at least 1.4 times higher than that of single digestion (43%), while the methane yield was increased by almost twice that of single digestion (0.14 to 0.24 ~ 0.41 m3 CH4/kg VSadd). After the BMP test, four feedstock mixtures were selected for a lab-scale reactor, including animal manure as a control sample. The highest methane yield of 0.355 m3 CH4/kg VSadd was obtained from the A4-mixture sample. With regard to the C/N ratio, the mixture materials showed an increase in methane yield by at least 1.2 times (13.4 to 16.4 ~ 21.3%), which means that the C/N ratio had an effect on the performance of co-anaerobic digestion.
음식물류폐기물은 2011년 기준 13,429ton/day, 축산분뇨는 2011년 기준 135,653ton/day 발생하였다. 2013년 음식물류폐기물과 축산분뇨의 해양 배출이 전면 금지되었고 육상처리기술 대안 중 하나로서 혐기소화공정기술이 떠오르고 있다. 음식물류폐기물은 유분과 염분이 높고, pH는 낮으며, C/N비 및 COD는 높기 때문에 혐기소화 기간이 길고 처리효율이 낮아 어려움을 겪고 있다. 이에 본 연구에서는 음식물류폐기물의 혐기소화 효율을 높이기 위해서 음식물류폐기물과 축산분뇨의 병합처리를 모색하였고, BMP-test를 통하여 혐기소화 효율을 분석 하였다. 사용된 대상 시료의 TS, VS, CODcr, pH 등 기본성상 분석 결과와 문헌조사를 토대로 병합비율을 산정하여 약 30일간 BMP-test를 진행하였다. 그 결과 단일소화에 비해 병합소화에서 바이오가스 발생량(mL/gVS)이 높았고, 병합시료 속에 음식물류폐기물의 비율이 높을수록 초기 바이오가스 발생이 많았는데 이는 축산분뇨에 비해 가용성 유기물질 성분을 많이 포함하기 때문으로 사료된다. 병합소화에서 병합비율은 가장 중요한 인자 중 하나이나 음식물류폐기물과 축산분뇨의 성상은 지역별로 다르고 계절 및 년도에 따라서도 다르며, 발생량도 다르기 때문에 적절한 병합비율을 결정하기 위해서는 향후 음식물류폐기물과 축산분뇨의 병합처리 뿐만 아니라 유기성폐기물의 다양한 병합처리 연구가 필요하다고 사료된다. 본 연구는 혐기소화공정 설계 및 혐기소화 효율을 높이기 위한 기초자료로서 활용될 수 있을 것이다.
Food waste, food leachate and livestock wastes from an usual farm and a farm using much disinfectant were mixed to incubate within anaerobic serum bottle for BMP test. The methane yield rate and lag phase were determined by the modified Gompertz model and the Logistic model. The maximum methane yield rates by the modified Gompertz model were 15.9 ~ 41.0 mL CH4/g VS and higher than by the Logistic model. The modified Gompertz model was more appropriate than the Logistic model to have higher determination coefficient R2. The methane fermentation of mix with sole livestock waste from the farm using much disinfectant had ninefold lag phase and 40% or lower maximum yield rate comparing with the mix with sole usual livestock waste. The methane yield rate from a tonne of mix was increased as the ratio of food waste and food leachate increased. The cumulative methane yield was in the proportion of 40 m3 to a tonne of food wastes. The results of BMP test were analyzed by a response surface methodology (RSM) and modelized to a binomial expression, which was verified by analysis of variance (ANOVA) and to be appropriate for this case.
In this study, optimization of anaerobic co-digestion for food and livestock wastes was studied by an experimental design method. A central composite design (CCD) was applied in designing experiments. Selected two independent variables for this study were initial substrate concentration and mixing rate of livestock wastes. The ranges of experiment for initial substrate concentration and mixing rate of livestock wastes were 2~10 g-VS/L and 0~100%, respectively. Selected responses were methane yield, maximum methane production rate and volatile solids (VS) removal rate. The experimental design was analyzed using a response surface methodology (RSM). Models obtained by the RSM were analyzed by analysis of variance (ANOVA). ANOVA demonstrated that the models were highly significant. Optimal conditions obtained for the models were initial substrate concentration of 2.1 g-VS/L and mixing rate of livestock wastes of 48.8%, respectively. The measured values under the optimal conditions were well in agreement with the predicted values from the models. Thus, it showed that the CCD and RSM were appropriate for determination of an optimal mixing condition in the anaerobic co-digestion process for food and livestock wastes.
Recent research has demonstrated that treating poultry litter with alum (aluminum sulfate) and aluminum chloride can remove environmental threats (ammonia, soluble phosphorus and odor) posed by litter. However, scientific information available on heavy metal in poultry litter with liquid aluminum chloride is still lacked. The purpose of this study was to investigate the effects of applying liquid aluminum chloride to rice hulls on heavy metals and to provide basic information to producers. Six hundred 0-d-old broiler were assigned to 4 treatments (control, 100 g, 200 g and 300 g of liquid AlCl3/kg of rice hulls, respectively) with 3 replicates of 50 birds. The experimental period lasted for 6 weeks. Liquid AlCl3 was sprayed on the rice hulls surface using a small hand pump. Total Al contents increased (P<0.05) with the increasing levels of liquid AlCl3 levels over time in comparison with control groups. Total Cu and Pb were lowered in all liquid AlCl3 treatments compared with the controls during 6 weeks. Significant differences in all treatments were found for total Cu contents at 2, 3 and 5 weeks and total Pb at 0, 1, 2 and 3 weeks. Total Zn contents decreased with time when compared with controls. However, no significant differences in total Zn contents were observed among all treatments. In light of environmental managements, spraying liquid AlCl3 to rice hulls indicated the significant advantages in reducing heavy metals as well as improving poultry industrial competitiveness.