해체 원전에서 총 폐기물의 약 70~80%에 해당하는 많은 양의 콘크리트 폐기물은 해체 폐기물의 대부분을 차지한다. 해체 시 발생된 콘크리트 폐기물은 핵종별 농도에 따라 규제해제 폐기물과 방사성폐기물로 정의할 수 있다. 따라서, 방사성 콘크리 트 폐기물의 처분 비용을 저감하기 위하여 자체 처분 및 제한적 재활용을 위한 제염 작업의 수행이 중요하다. 그러므로 콘크리트 폐기물의 효율적인 제염 작업을 위해 내부 방사능 분포를 예측하는 것이 필수적이다. 본 연구는 원전 해체 시, 발생되는 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위하여 다양한 컴프턴 영상 재구성 방법의 성능을 비교하였다. 다양한 컴프턴 영상 재구성 방법으로 단순 역투사(SBP), 필터 후 역투사(FBP), 최대우도 기댓값 최대화 방법(MLEM), 그리고 기존 의 MLEM의 시스템 반응 함수에 에너지 정보가 결합되어 확률적으로 계산하는 최대우도 기댓값 최대화 방법(E-MLEM)이 사용되었다. 재구성된 영상을 획득한 후, 정량적인 분석 방법을 이용하여 재구성된 영상의 성능을 정량적으로 비교 및 평가하였다. MLEM 및 E-MLEM 영상 재구성 방법은 각각 재구성된 영상에서 높은 이미지 분해능과 신호 대 잡음비를 유지하는데 있어 가장 좋은 성능을 보여주었다. 본 연구에서 도출된 결과들은 원자력 시설 해체 시 방사성 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위한 수단으로 컴프턴 영상을 사용할 수 있는 가능성을 보여주었다.
2017년 고리 1 호기 영구정지를 계기로 국내 원자력발전소의 해체가 점차 가시화되고 있다. 앞으로 원전 해체가 본격적으로 추진될 경우 원전 1기 당 약 16만 t의 콘크리트 폐기물이 발생될 것으로 예측되었으며, 이들 콘크리트 폐기물은 대부분 오염 준위가 매우 낮아 자체처분 대상으로 고려될 수 있다. 따라서, 국내 자체처분 폐기물(원자력안전위원회 고시 2017-65호에 따른 자체처분 허용농도 또는 자체처분 허용선량을 만족하는 폐기물)에 대한 현행 규제체계가 대량의 콘크리트 폐기물에 대한 무제한적 자체처분에 대해서도 유효성을 유지할 수 있는지를 사전에 확인할 필요가 있다. 이와 관련, 국내 자체처분 규정 개발 시 참조기준인 IAEA SRS No. 44를 심층분석하고, 국내 산업계 현황을 반영한 입력값과 계산식을 이용하여 4가지 자체 처분 시나리오에 대한 예상 피폭방사선량을 평가하였다. 그 결과, 재활용 시나리오에 대한 예상선량은 대부분 정상 시나리오에 대한 자체처분 선량 기준(즉, 0.01 mSv·y-1)보다 낮은 것으로 평가되었으나, 성토 후 거주 시나리오의 경우 보수적인 가정을 적용하면 자체처분 선량 기준을 초과할 가능성도 배제할 수 없는 것으로 나타났다. 따라서, 대량의 해체 콘크리트 폐기물의 안전하고 지속가능한 자체처분을 위해서는 폐기물 처리업체 다변화, 성토 시나리오에 대한 보다 구체적인 평가, 성토를 통한 자체처분에 대한 부분적 제한조건 설정 등을 고려할 수 있다.
전자폐기물의 발생량이 급증하고 있고, 전자폐기물로 인한 환경오염 혹은 자원낭비등과 같은 문제를 야기하고 있다. 따라서 전자폐기물 안에 포함된 중금속을 재활용할 수 있는 기술 개발이 필요하다. 한편, 채움재(콘크리트 혹은 모르타르)는 방사성폐기물의 차폐를 위해 사용되나, 방사성 차폐 성능을 확보한 재료를 적용하고 있지 않다. 따라서 채움재는 차폐성능에 관한 신뢰가 부족한 상황이다. 그러므로 본 연구에서는, 전자폐기물을 채움재의 잔골재로 적용하기 위하여 콘크리트의 역학적 특성을 평가하였다. 실험결과, 압축강도, 휨강도, 탄성계수 및 1μm 영역의 공극이 상당히 영향을 받는 것으로 나타났으나, 광물질 혼화재를 결합재로 사용하면 성능이 개선되었다. 따라서 전자폐기물은 채움재의 잔골재로써 적용이 가능할 것으로 판단된다.
향후 원자력시설 해체 시 막대한 양의 해체 콘크리트 폐기물이 발생할 수 있음을 감안하였을 때, 방사성 콘크리트 폐기물의 최적 처리기술에 대한 면밀한 검토와 향후 기술개발 방향에 대한 논의는 반드시 필요하다. 본 논문에서는 방사성 콘크리트 폐기물의 국내외 발생 사례를 종합해 보고, 처리 대상이 되는 방사성 콘크리트 폐기물의 특성을 검토하였다. 또한, 종래의 방사성 콘크리트 처리기술로써 기계적 제염기술, 화학적 제염기술, 부피감용기술, 재활용 및 고화기술에 대한 국내외 적용 사례를 정리하고 기술 개발 동향을 살펴봄으로써 기존 기술의 한계점을 파악하고 기술 고도화 방향을 고찰해 보고자 한다.
우라늄 토양 및 콘크리트 폐기물의 동전기 제염 후 방사성폐기물의 시멘트 고화특성을 분석하기 위하여, 시멘트 고화 유동성 시험을 수행하고 시멘트 고화 시료를 제작하였다. 시멘트 고화시료에 대하여 압축강도, pH, 전기전도도, 방사선조사 효과 및 부피증가를 분석하였다. 방사성폐기물의 시멘트 고화의 작업 적정도는 175~190% 정도였다. 시멘트 고화시료의 방사선 조사 후 압축강도는 방사선 조사 전 압축강도 보다 약 15% 감소하였으나, 한국원자력환경공단 인수기준 (34 kgf·cm-2)을 만족하였다. 동전기 제염 후 방사성폐기물의 시멘트 고화 시료에 대한 SEM-EDS 분석결과, 알루미늄상은 시멘트와 잘 결합 한 형상을 나타낸 반면, 칼슘상은 시멘트와 분리된 형상을 나타내었다. 방사성폐기물의 시멘트 고화 부피는 시멘트에 대한 폐기물의 배합과 수분량에 따라 다르게 나타났다. 방사성폐기물의 시멘트 고화 부피(C-2.0-60)는 약 30% 증가였으며 동전기 제염 후 생성된 방사성폐기물의 영구처분은 적절하다고 판단되었다.
2017년 6월에 영구정지 된 고리 1호기의 해체는 한국의 상업 원전에 대한 첫 해체 사례가 될 것이다. 해체 과정 중에 발생하 는 폐기물에 대한 처분은 전체 해체 비용의 많은 부분을 차지한다. 따라서 방사화 및 오염된 콘크리트 구조물은 적절한 해체 전략을 수립하여 경제적이고 안전하게 해체되어야 한다. 본 논문에서는 생물학적 차폐체에 대한 최적화된 해체 및 처분 시 나리오를 연구하였다. 해체사례, 폐기물 처분 규정 및 처리 기술을 분석하였다. 그리고 생물학적 차폐체 제거 과정의 폐기물 발생량을 최소화하기 위해서, 최적 해체 시나리오를 제시하였고 폐기물 처분 방안을 도출하였다.
원자력시설의 해체 시 발생하게 되는 해체 방사성폐기물을 나누면 크게 금속, 콘크리트, 토양 및 기타 폐기물 등으로 나뉘는데, 이중에서 콘크리트폐기물은 80%이상을 차지하고 있으며, EC(European Commission)의 보고서에 의하면 2060년까지 원자력시설의 해체에 따라 유럽에서만 약 500만 톤의 콘크리트폐기물이 발생할 것으로 예상하고 있다. 상용 원전의 경우 해체 콘크리트폐기물이 약 50∼55만 톤 정도 발생하고 있으며 이들 방사성폐기물은 약 5% 이내로 1기의 상용 원자로를 해체 할 경우 방사성 콘크리트폐기물은 약 25,000 톤이 발생한다. 이는 원전 수명기간에 발생하는 방사성폐기물의 총량을 훨씬 상회하는 물량이다. 이에 원자력 선진국에서는 해체 콘크리트폐기물의 감용 및 재활용에 대한 기술개발이 이미 진행되고 있으며, 국내의 경우에도 2030년 이내 12기의 원전 해체가 예상됨에 따라 해체 콘크리트폐기물을 처리/처분하기 위한 기반기술 확보가 수행되어야 한다. 이러한 기술개발은 방사성 콘크리트폐기물의 부피감용과 환경안전성 및 재활용을 통한 국내 부존자원의 활용 극대화 관점에서 반드시 필요하다. 본 연구에서는 해체 콘크리트폐기물의 재활용에 필요한 핵심기술로서 오염 해체 콘크리트폐기물의 감용 및 재활용하기 위한 기술현황을 논의하였다. 해체 콘크리트폐기물 처리기술에서 가장 중요한 요소기술은 대부분의 방사성 물질이 농축되어 있는 미세분말을 처리하여 재생시멘트, 재생골재 등으로 재활용하는 것이다. 유럽의 경우 해체 콘크리트폐기물의 65%를 방사성폐기물 저장고의 폐기물 드럼이나 컨테이너의 Encapsulation material, 방사성 보호 차폐물을 위한 콘크리트, 제한된 장소에서 새로운 시설의 건설에 이용하고 있다. 일본은 환경적 부담과 방사성폐기물의 감용을 위해서 원자력시설에서 발생하는 콘크리트폐기물의 재활용 기술 연구를 통해 생산된 고품질 재생골재의 특성 및 환경적 영향을 평가하고자 Wall model과 Building model을 세워 일반 콘크리트와 비교 평가 중에 있다. 또한 일부 혼합재는 잡고체 폐기물의 처분을 위한 모르타르로 재활용하고 있는데 이는 일반 혼합재보다 고비용이지만 life cycle cost를 고려할 경우 재활용 시멘트 보다 경제적인 것으로 평가되고 있다.
원자력발전소가 폐로 단계에 도달하게 될 경우, 다량의 방사성물질 및 폐기물이 발생한다. 특히, 해체 시 발생되는 콘크리트 폐기물은 경제적, 환경적 측면을 고려해서 재사용, 재활용, 처분 등이 관리방법 중 가장 적합한 방법을 선정해야 한다. 원자력시설의 해체 시 발생하게 되는 콘크리트 폐기물은 80%이상을 차지하고 있으며, EC(European Commission)의 보고서에 의하면 2060년까지 원자력 시설의 해체에 따라 유럽에서만 약 500만 톤의 콘크리트 폐기물이 발생할 것으로 예상하고 있다. 이러한 막대한 양의 콘크리트 폐기물에 대해 프랑스, 일본, 벨기에 등에서는 이미 콘크리트 폐기물의 제염 및 저감에 대한 연구가 심도 있게 진행 중에 있으며 프랑스의 경우에는 실험적인 연구를 거쳐서 상용화 수준에 다다른 실정이다. 콘크리트 폐기물은 원자력시설에 제한적으로 재활용이 가능하며, 방사성 폐기물의 저장 및 기반시설의 건설, 방사성 폐기물 처리에 사용되는 콘크리트 고화체, shielding block, backfiller 등으로 사용되고 있다. 해체 콘크리트 폐기물은 용적오염과 표면 오염으로 이루어져 있으며 대부분 표면으로부터 약 1∼10mm 두께로 오염되어 있어 기계적 처리 방법을 통해 방사성 폐기물로서 처리되어야 한다. 방대한 양으로 발생되는 콘크리트 해체폐기물을 자체처분 하거나 재활용한다면 처분 대상 폐기물량의 감소로 인한 처분 비용의 절감 및 처분 안전성의 증대뿐만 아니라 자원의 재활용성을 증대시킨다는 점에서 매우 긍정적인 측면을 나타낸다. 원자력시설의 콘크리트 제염기술로는 물리적 방법을 사용한 제염기술이 주로 사용되며 이를 다시 세분화 하면 표면제염기술과 표면파쇄제염으로 구분된다. 방사성 콘크리트의 물리적 표면제염 공정 및 장치 선정시에는 오염확산 및 작업자의 방사능 피폭 최소화, 제염 폐기물의 최종 처리방법, 제염 작업 최적화를 위한 최단, 최소 작업과 장소, 대상, 목적 등을 고려하여 제염기술이 선정되어야 한다. 이는 곧바로 방사능 구역에서의 작업자의 안전성 향상 및 해체비용 절감과 직결되기 때문이다. 그러나 원자력이라는 특수한 상황에서는 최적의 기술 선정시 경제적인 측면 보다는 안전성에 바탕을 두고, 주위 환경이 오염을 최대한 억제하는 방법에 초점을 맞추어야 할 것이다.
최근 건설폐기물의 발생량 급증과 함께 천연골재자원의 대체재로 폐기콘크리트를 활용한 재생골재의 사용에 국가․사회적인 관심이 집중되면서, 이에 대한 관리 및 적정처리에 대한 사회적 중요성이 대두되었으며, 향후 골재자원의 수급불균형 문제에 대비한 장기적 자원수급대책 등을 위하여 자원의 효율적 이용과 절약, 폐기물의 발생규제 및 재활용 촉진을 통한 환경보존 등에 대한 관심이 증가되고 있다. 골재수요는 건설 산업의 지속적인 증가에 힘입어 향후에도 꾸준하게 증가하여 연간 2억 m³ (약 3억 3천만톤) 이상의 수요가 지속적으로 발생할 것으로 예상되고 있으며, 국토교통부의 연도별 골재 채취 실적 자료에 의하면, 2002년의 경우 골재의 허가 채취량은 1억 1,900만 m³에 달하여 골재 수요량인 2억 1,700만 m³의 54.9%를 채취 허가량으로 공급한 것으로 나타나고 있어 부족분의 골재를 충당하기 위한 노력이 다각적으로 진행되고 있으며, 이러한 배경에서 재생골재의 필요성이 크게 대두되고 있다. 건설폐기물 중 발생하는 폐기콘크리트는 발생하는 양이 대규모로 공급 면에서 별 문제가 없고, 그 조성도 시멘트 모르타르와 골재의 비교적 단일 조성으로 되어 있어 파쇄 하여 재사용하여도 콘크리트 자체의 물성을 어느 정도 유지하기 때문에 재활용가치가 높은 것으로 평가되고 있다. 본 연구에서는 건설폐기물로 발생되는 폐콘크리트를 이용하여 레미콘업체 및 건설업체 등에서 사용할 수 있는 품질의 순환골재 생산기술을 개발하고자 하였다. 이를 위해 잔골재 회수 process 구축 및 물리적・열적 박리 기술 적용과 최적 운전조건을 도출하였다.
국내 건설 산업용 골재 중 레미콘용 골재의 품종별로 잔골재는 바다모래, 하천모래, 부순모래, 육모래, 산모래 순으로 사용되고 있으며, 굵은 골재는 부순자갈이 대부분 사용되고 육자갈 및 강자갈이 일부 사용되고 있다. 굵은 골재의 경우 부순 자갈의 사용량이 크게 증가되었으며, 잔골재의 경우 바다모래 및 부순 모래의 사용량이 증가되고 있다. 골재수요는 건설 산업의 지속적인 증가에 힘입어 향후에도 꾸준하게 증가하여 연간 2억 m³ (약 3억 3천만 톤)이상의 수요가 지속적으로 발생할 것으로 예상되고 있으며, 국토교통부의 연도별 골재 채취 실적 자료에 의하면, 2002년의 경우 골재의 허가 채취량은 1억 1,900만 m³에 달하여 골재 수요량인 2억 1,700만 m³의 54.9 %를 채취 허가량으로 공급한 것으로 나타나고 있어 부족분의 골재를 충당하기 위한 노력이 다각적으로 진행되고 있으며, 이러한 배경에서 재생골재의 필요성이 크게 대두되고 있다. 국토교통부 골재 허가 채취량은 수요량의 54 % 정도로 부족분의 골재를 충당하기 위한 노력이 다각적으로 진행되고 있으며 재생골재의 필요성이 크게 대두되고 있다. 국토교통부에서는 재생골재 사용 시 사용비율에 따른 건축물 용적률 완화 규정을 적용하고 있으며, 환경부에서는 재생골재의 사용을 의무화한 「건설폐기물의 재활용 촉진에 관한 법률(안)」이 시행되고 있으며 국토교통부에서는 「순환골재 품질기준(안)」 제안되어 재생골재의 재활용 촉진을 위한 정책으로 적극 추진 및 장려되고 있다. 본 연구에서는 건설폐기물로 발생되는 폐콘크리트를 이용하여 재생기술 개발을 통해 레미콘업체 및 건설업체 등에서 사용할 수 있는 품질의 순환골재 생산기술을 개발하고자 하였다. 이를 위해 발생 폐기물의 성분분석, 재생 process 구축 및 열해리를 통한 박리에 적절한 최적 운전조건을 도출하였다.
콘크리트 분야에 산업폐기물을 활용하기 위한 연구는 이미 오래전부터 수행되어 고로슬래그나 플라이애시와 같은 시멘트 혼합재료는 이제 보편적으로 사용되고 있다. 이와 같은 산업폐기물을 콘크리트에 재활용 할 경우 콘크리트의 성능개선이나 품질개선 효과를 나타낼 경우 이는 환경보전이나 자원재활용 측면에서 경제적 부가가치를 도모할 수 있기 때문에 적극적인 재활용 방안이 모색되어져야 한다. 이에 본 연구에서는 국내의 여주와 이천에서 주로 발생되는 산업도자기 폐기물과 전국적으로 발생되는 생활도자기 폐기물을 콘크리트 산업에 활용하기 위한 기초 연구로서 국내에서 기 수행된 연구자료를 검토하여 도자기 폐기물을 콘크리트 산업에 사용하기위한 재활용성을 검토하고자 하였다. 김기형(1999)과 문한영(2001) 등은 도자기 폐기물을 사용한 시멘트 모르터의 특성에 대한 연구와 요업폐기물을 콘크리트용 골재로 재활용하기 위한 연구를 수행하였다. 이 연구에서는 폐도자기 분말 20%를 모르터용 혼화재료로 사용한 경우 플로우 값이 양호하였으며 이때 압축강도는 감소하는 경향을 나타낸 것으로 연구되었다. 또한 폐도자기를 잔골재로 사용한 경우 플로우 값은 변화가 없으나 강모래를 사용한 경우보다 압축강도가 증가하였으며 폐도자기 잔골재를 100% 사용한 경우 약10%의 압축강도 증가현상이 나타나는 것으로 연구되었다. 그러나 잔골재 및 굵은골재로 각각 대체한 콘크리트의 슬럼프는 크게 감소하여 이에 대한 적절한 대책이 마련되어야할 것으로 나타났다. 강성구(2004) 등의 연구에서는 폐도자기를 골재로 이용한 콘크리트의 특성을 연구한 결과 비중은 일반 골재에 비하여 다소 작고 흡수율은 높으나 비교적 입도가 양호하며 표면조직을 광학현미경으로 관찰한 결과 재활용골재나 부순돌과 차이가 없는 것으로 확인되어 시멘트 페이스트와의 부착이 양호할 것으로 판단하였다. 이화영(2008) 등이 연구한 폐도자기분말의 혼입에 따른 시멘트 모르타르의 특성에 의하면 폐도자기 분말을 시멘트 혼합재로 사용할 경우 작업성을 개선시키고 시멘트의 사용량을 줄임과 동시 강도증진 효과를 얻는 것으로 연구되었으며 시멘트 혼합재로서의 성능은 슬래그를 사용한 것보다 유리한 것으로 연구되었다. 또한 폐도자기 분말의 PHC 파일용 시멘트 혼화재 적용성 검토(2010)에 대한 연구에서도 초기 강도 개선효과가 있는 것으로 보고되어 시멘트 및 콘크리트 2차 제품에 대한 활용가능성이 있는 것으로 나타났다. 신한국(2010)과 류현기(2011) 등은 폐도자기 미분말을 이용한 순환골재의 강도증진에 관한 연구와 폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구를 수행하였으며 그 결과 폐도자기 분말을 사용할 경우 콘크리트는 높은 강도발현을 나타내는 것으로 연구되었다. 배상우(2012) 등의 연구에서도 폐도자기를 활용한 무기결합재 모르타르의 잔골재 치환율 변화에 따른 유동 및 강도특성에 대한 연구결과 유동성 및 압축강도의 증가가 확인되었다. 이와 같이 기존 연구문헌을 검토한 바 도자기 폐기물은 잔골재의 부존자원 고갈 및 채취로 인한 환경훼손 등의 문제에 기여할 수 있는 콘크리트용 골재로서 재활용하는 방안과 시멘트의 재료절감, 콘크리트의 조기강도 증진 및 품질성능 향상을 도모할 수 있도록 미분말화하여 시멘트 대체재료로서 활용하는 방안에서 그 효용가치를 나타낼 수 있을 것으로 사료된다. 그러나 폐도자기 분말이 포졸란 반응이나 장기강도 증진, 내구성 등에 효과를 나타내는지에 대해서는 향후 연구가 필요할 것으로 판단되었다.
국내는 Carbon Capture & Storage(CCS) 기술은 일정 수준에 도달해 있으나, 대량 저장을 할 수 있는 지중 및 해양지역의 확보와 실용화가 곤란한 실정이다. 따라서 본 연구에서는 액상 탄산화 반응을 통하여 이산화탄소(CO₂)를 안정하게 고정화가 가능한 알칼리 토금속인 칼슘(Ca)과 마그네슘(Mg) 성분을 다량 포함한 산업부산물인 석탄 바닥재 및 순환골재에 CO₂를 저장하기 위한 기초 연구를 수행하였으며, 이의 반응물인 개질된 석탄 바닥재 및 순환골재를 이용하여 건자재의 제조 가능성에 대한 연구를 수행하였다.