This study reports an experimental and analytical exploration of concrete columns laterally confined with Fe-based shape-memory alloy (Fe-SMA) spirals. For performing experiments, Fe-SMA rebars with a 4% prestrain and diameter of 10 mm were fabricated and concrete columns with internal Fe-SMA spiral reinforcement were constructed with a diameter of 200 mm and height of 600 mm. An acrylic bar with an attached strain gauge was embedded in the center of the specimen to measure local strains. Experimental variables encompassed the Fe-SMA spiral reinforcement, spacing, and activation temperature. Uniaxial compression tests were conducted after applying active confinement to the concrete columns through electrical-resistance heating. Notably, as the Fe-SMA spiral spacing decreased, the local failure zone length and compressive fracture energy of the prepared specimens increased. Additionally, a model incorporating compressive fracture energy was proposed to predict the stress–strain behavior of the. This model, accounting for active and passive confinement effects, demonstrated accurate predictions for the experimental results of this study as well as for previously reported results.
This study aims at investigating the fracture characteristic according to the shape of the double cantilever beam specimen for mode II with ultra-high strength steel and Mg alloy steel. As the analysis, all three models had the left-hand holes that were constrained by the cylindrical support and the right-hand holes were enforced by the constraint condition of 6mm/min. This study result showed that the shorter the load block of the double envelope test specimen, the higher the safety. The results of this study are thought to be useful for examining the fracture characteristics of specimen for mode II with ultra high strength steel and Mg alloy steel.
This paper aims at investigating the adhesive property at damage analysis according to the shape of the DCB test specimen made of Titanium, Dualumin as the high strength nonferrous metals. In this analysis, all three specimens had the lower holes bound by the cylinder support and the top holes were elongated with the rate of 6mm/min. The study results show that the longer the load block of DCB specimens, the more reliable and durable they are. It is utilized as the basic data at investigating the damage properties of adhesives in DCB specimens made of high strength nonferrous metals.
In this paper, a commercial multibody dynamics program ADAMS was utilized to investigate the model for the multi-joint boom conflicts. In this process, CATIA, ANSYS and ADAMS were used to develop the simulation. The addition of ADAMS made the system more accurate and improved precision of the system. In brief, the 3D CAD model of the structure was initially developed via CATIA. After this, the CATIA models were exported to ANSYS for creating flexible-body modeling by using formatted file. Subsequently, with ADAMS, the flexible body model was directly imported from ANSYS which performed the analyses of the dynamic collision of the nozzle boom conflicts. This contained the information regarding geometry and model shapes of the flexible body. Using ADAMS/Durability, it was possible to determine the strain energy for the nozzle configuration by crashing the contact structure that was created. Via this procedure, the acquired simulation analysis of nozzle showed interestingly good results with respect to the objectives of the study
PSC 보의 비파괴 손상검색을 위한 고유진동수 이용 손상추정법과 모드형상 이용 손상추정법을 제시하였다. 먼저, 고유진동수의 변화를 사용하여 손상의 위치를 예측하는 알고리즘과 고유진동수 1차 섭동 이론에 근거하여 균열크기를 예측하는 알고리즘을 요약하였다 다음으로, 모드형상의 변화로부터 모드민감도의 변화를 감지하고 이를 통해 손상의 위치와 크기를 추정하는 손상지수 알고리즘을 요약하였다. PSC 보의 유한요소모델을 사용하는 수치실험을 통해 고유 진동수 이용 손상추정법과 모드형상 이용 손상추정 법의 정확성을 검증하였다. 분석결과 두 방법 모두 실험 대상 구조에 도입된 균열의 위치를 정확하게 예측하였으며 균열의 크기를 비교적 근사하게 예측하였다.
In this study, rear failure properties of fiber reinforced concrete considering projectile type was evaluated. It was considered that scabbing of Flat nose projectile reduced more than sperical nose projectile by dispersion of impact force.
In this study, impact of high-velocity projectile by mixing steel fiber, polyamide, nylon, polyethylene fiber which have different shape and properties respectively. Scabbing is restrained because of micro-crack caused by the shock wave offset effect and energy dispersive of synthetic fibers are mixed populations.
In this study is analysis which dams breach shapes are effect on peak discharge of dam-failure. The dam breach shapes and failure time are important peak discharge when dam failure. When dam failure times are 1hr, 2hr and 3hr condition for the ECRD and 0.1hr and 0.2hr for the CG and CFRD that breach shapes changed base length Bb=1Hd, Bb=2Hd and Bb=3Hd. As the results from DAMBRK(Dam Break model) peak discharge are increase base widths lengthen. As failure time is longer then peak discharge is decrease. So peak discharge is increase more short of dam failure time. Also peak discharge is increase become larger dam breach shapes.