Water-soluble substances like hydrogen fluoride, generated in semiconductor manufacturing, pose serious health and environmental risks, underscoring the need for effective capture devices. Vertical liquid capture devices help by aggregating and discharging hazardous substances with water, but their design can lead to backflow during abnormal operations, causing unintended releases and impacting efficiency and safety. This study seeks to improve a vertical liquid collection device’s containment performance by optimizing its geometry. The vertical wall was rotated at various angles and directions, and turbulent kinetic energy and streamline distribution were analyzed to assess vortex formation and flow characteristics. These structural modifications identify optimal conditions to control hazardous substance migration, offering insights for future pollutant removal device designs.
This study aims to prepare bamboo-based activated carbons with surface modifications, focusing on carbon dioxide (CO2) capture in public indoor spaces. The surface of the activated carbon adsorbents was chemically modified through three steps: carbonization, steam activation, and chemical treatment using potassium hydroxide (KOH) and potassium sulfamate (KSO3NH2). The specific surface area and pore volume of the obtained adsorbent (BSAC-KN) were 1,246 m2/g and 0.74 cm3/g, respectively. The surface modification resulted in an adsorption capacity of up to 3.79 mmol-CO2/ g-AC for carbon dioxide. In addition, the expansion of the specific surface area and the enhanced physico-chemical interaction between the weak acidic CO2 molecules and the basic AC surface improved adsorption capacity.
In this study, in order to develop an eco-friendly filtration method that considers the health and safety of the aquatic ecosystem by differentiating it from chemical methods (coagulants, oxidants, etc.), which are mainly used as methods for managing the removal of algae in the algal bloom stage, an effective separation membrane for algae removal was reviewed, an appropriate technology was proposed through field application, and the effect of algae removal was evaluated. The membrane used was applied in the field by constructing an optimal technology through auxiliary facilities with an immersion tubular membrane and a pressurized tubular membrane resistant to adhesive pollutants and algae. As a result, the strong characteristics of Fouling (blocking) by adhesive algae were confirmed, and the effect of removing algae and particulate matter in the immersion type tubular membrane was 99% chlorophyll-a (Chl-a), 99.2% suspended solid (SS), and 96.7% of pressurized tubular membranes, showing excellent effects in removing algae and particulate organic matter. In addition, as a result of field application to eutrophic reservoirs where high-density algae are distributed, it was confirmed that stable operation of algae was possible during the process of filtering, separation, and concentration.
탄소중립을 달성하기 위해 이산화탄소를 포집, 활용, 저장하는 CCUS (carbon capture, utilization, and storage) 기 술이 주목받고 있다. 본 연구에서는 광물 탄산화 공정을 통해 이산화탄소를 탄산염으로 고정하고, 이를 전이금속 탄산염 기반 리튬이온배터리 (LIB) 음극재로 적용하였다. CO2를 탄산염으로 고정후, 이를 이용해 FeCO3를 제작하고, rGO와 PVP와 복합 화하여 음극활물질에 적용하였다. rGO는 전기전도도를 높이고 입자의 응집을 방지해 부피 팽창을 완화했으며, PVP는 계면 활성제로서 입자 표면을 안정화하여 구조적 안정성을 강화하였다. FeCO3-PVP-rGO 복합체 기반한 음극재에 대한 전기화학 테스트를 진행한 결과, FeCO3/rGO 복합체는 1,620 mA/g의 전류 밀도에서 50 사이클 이후에도 400 mAh/g의 용량을 유지하 였다. 본 연구는 CO2를 고부가가치 배터리 소재로 전환하여 차세대 에너지 저장 기술에 기여할 가능성을 시사한다.
본 연구에서는 중공사형 이산화탄소 분리막 모듈을 사용하여 수소개질기 배가스로부터 이산화탄소 포집을 목적 으로 한 분리막 공정 최적화 연구를 진행하였다. 랩스케일의 소형 분리막 모듈을 사용하여 혼합기체를 대상으로 이산화탄소 순도 90% 및 회수율 90%을 달성하는 2단 공정 조건을 도출하였다. 막 면적이 정해진 모듈의 분리막 공정에서는 스테이지-컷, 주입부 및 투과부 압력에 따라서 포집 순도 및 회수율이 모두 다르게 나타나기 때문에 운전 조건에 대한 최적화가 필수적이 다. 본 연구에서는 다양한 운전 조건에서 1단 분리막에서 보이는 공정 포집 효율의 한계를 확인하고, 높은 순도와 회수율을 동시에 달성하기 위한 2단 회수 공정을 최적화하였다.