This study was carried out in order to provide useful data for planning fabrics of summer eco-friendly fashion products. The fabrics used in this study were four cellulose fibers: cotton, cotton/mulberry blended, flax, and flax/lyocell blended. Dyeing with natural indigo was carried out under three different reducing conditions (i.e., general, eclectic, and eco-friendly) that have different reducing agent and pH levels, and hydrosulfite and glucose were used as a reducing agent. The dye uptake (K/S value) of fabrics dyed with natural indigo by a reducing condition was the highest at 660nm. Regardless of the fabrics, dye uptake was the highest under the general reducing condition and the lowest under the eco-friendly reducing condition. Under different reducing conditions, the dye uptake of natural indigo fabrics with the maximum absorption wavelength indicated a difference. The colorfastness of cellulose fabrics that were dyed with natural indigo had a rate of 4 to 5 except for rubbing fastness, which indicated good colorfastness. Additionally, natural indigo-dyed cotton and flax fabrics had good antibiosis. When the color characteristics of fabrics dyed with natural indigo were measured, all of the three reducing conditions created purple blue (PB) colors, and the color characteristics of dyed fabrics by reducing condition and fabric showed significant differences.
가압경수로의 일차계통 제염을 위해 개발된 HYBRID 제염제의 재료부식 특성을 틈부식 시험방법을 사용하여 수행하였다. 기존 제염제의 부식특성과 비교하기 위하여 상용 제염제인 OA, CITROX 제염제의 부식특성도 함께 평가하였다. 시험재료 는 가압경수로의 일차계통의 주 재료인 Alloy 600과 304 SS을 대상으로 시험하였다. 틈부식 시험은 가혹조건의 부식시험 으로써 내식성이 강한 원전 구조재료의 건전성을 짧은 시간에 잘 확인할 수 있었다. 시험결과 OA와 CITROX 제염제에서는 crevice 시편 표면에 pitting과 IGA가 나타났으나 HYBRID 제염제에서는 국부부식이 전혀 발생되지 않았다. 무게감소 측정 결과 HYBRID 제염조건에서는 1.3×10-3 μm/h 이하의 매우 낮은 부식속도를 나타내었다. 반면에, OA 제염제의 경우 Alloy 600은 4.0×10-2 μm/h 로 비교적 균일한 부식율을 나타내었으나, 304 SS의 경우 pH = 2.0 이하에서 급격한 가속부식을 나타 내었다. HYBRID 제염제의 경우 일반부식에서뿐만 아니라 crevice 부식조건에서도 거의 부식이 일어나지 않아 PWR 계통 제염 시 산화막 용해 후 제염제가 계통재료에 노출되어도 재료의 건전성이 입증되었다.
Background : Rehmannia glutinosa root (R. root) has been used as traditional medicine, and is important resource for natural medicines and functional foods. However, R. root have catalpol which have bitterness, and undigested sugars, including stachyose, raffinose, and verbascose as main compounds, and these compounds can cause diarrhea and abdominal pain. Therefore, this study was performed to determine the changes in reducing sugar producted from undigested sugars and catalpol contents as a bitter taste compound in R. root with aging treatment conditions.
Methods and Results : R. root was treated at 10 - 70℃ for 0 - 48 h, and extracted with 50% ethanol solution. Their catalpol content was analyzed using HPLC-UVD, reducing sugar content generated from undigested sugars was measured by the Nelson-Somogyi methods, and these reaction rates were calculated from their variation according to aging time and temperature. During aging treatment, reducing sugar content increased and catalpol content decreased. Their formation and degradation rates were highest at 50℃ and 30 - 40℃, and their rates were 1.89 ㎎/g·h and 23.09 - 23.33%/h, respectively.
Conclusion : These results indicated that aging treatment can positively affect the sweetness and digestibility of R. root slurry. Therefore, aging treatment could be considered for improving the sensory qualities and digestibility of R. root.
This study investigated the enzymatic pretreatment of food waste (FW) using Viscozyme L to enhance reducing sugar (RS) production. Response surface analysis was used to study the effects of the pretreatment variables of temperature (T) (35-55oC) and incubation time (IT) (9-15 hr). The results indicated that the generated regression model represented the relationship between the independent variables and the responses. The RS production from FW was affected by IT rather than T. Within the design boundaries, a maximum RS yield (0.72 g/g of total solids of FW) was obtained at 44.5oC and 13.7 hr.
Electrochemical reductive extraction of tin from semiconductor plating process wastewater was experimented using synthetic wastewater. Copper and graphite plate were used as a cathode and an anode, respectively. The tin extraction could be optimized in pH 0.5 and polar space of 60 mm. The extraction rate of tin per minute was increased as current and initial tin concentration increased, and more than 87% and 97% of tin could be extracted within 80 minutes at 500 mg/L and 1,000 mg/L of initial tin concentration, respectively. The electrochemical reaction orders and kinetic coefficients were 1.24 ~ 1.26 and 0.004 ~ 0.006 (L/mg)(n − 1)min−1. The residual concentration of tin could be expressed as Ct= (Co −0.246+ 0.0012t)−4.065.
산화/환원 반응에 매우 민감한 우라늄의 침철석 및 몬모릴로나이트에 대한 수착 특성을 알아보기 위해 산화우라늄(VI)과 환원우라늄(IV)를 준비하였다. 환원우라늄은 황산염환원박테리아에 의해 황산염이 환원되는 과정에서 같이 환원된 우라늄(IV)를 희석하여 사용하였다. 광물에 대한 우라늄의 수착량은 우라늄(IV)가 우라늄(VI)에 비해 상대적으로 낮았으며, 이러한 원인 중의 하나는 용액상의 우라늄(IV)가 미세한 콜로이드 형태로 존재하여 광물 표면에 대한 수착력이 약했기 때문이다. 투과전자현미경을 사용하여 우라늄(IV)가 나노 콜로이드의 특징을 가지고 있음을 확인하였고, 이러한 결과는 심부 자연계의 지하수를 따라 이동 가능한 우라늄종이 이온성 우라늄(VI)뿐만 아니라 콜로이드성 우라늄(IV)도 포함될 수 있음을 의미한다.
Electrochemical reductive extraction of copper from LCD manufacturing process and through hole plating process for PCB circuit board wastewater was experimented using synthetic wastewater. Copper plate which could be used as raw material through melting with extracted copper from wastewater and graphite plate were used as a cathode and an anode, respectively. The copper extraction could be optimized in pH 2 and polar space of 45mm. The extraction rate of copper per unit energy was decreased as HRT increased and initial copper concentration decreased. As the optimal HRTs which could maximize the productivity for copper on energy, 80 ~ 110 min at 50 mg/L, 64 min at 1,000 mg/L and 77 ~ 98 min at 3,000 mg/L were determined, respectively.