검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 °C, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.
        4,000원
        2.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The grain growth behavior in the (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) system is studied as a function of the amount of CZ and grain shape. The (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) powders are synthesized using a conventional solid-state reaction method. A single orthorhombic phase is observed at x = 0 – 0.03. However, rhombohedral and orthorhombic phases are observed at x = 0.05. The grain growth behavior changes from abnormal grain growth to the suppression of grain growth as the amount of CaZrO3 (CZ) increases. With increasing CZ content, grains become more faceted, and the step-free energy increases. Therefore, the critical growth driving force increases. The grain size distribution broadens with increasing sintering time in KNNCZ-0.05. As a result, some large grains with a driving force larger than the critical driving force for growth exhibit abnormal grain growth behavior during sintering. Therefore, CZ changes the grain growth behavior and microstructure of KNN. Grain growth at the faceted interface of the KNNCZ system occurs via two-dimensional nucleation and growth.
        4,000원
        3.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3, which has a rhombohedral-tetragonal phase boundary composition. MnO2 and CuO-added 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 ceramics sintered at a relatively low temperature of 1020 oC show a pure perovskite phase with no secondary phase. As the addition of MnO2 and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of MnO2.
        4,000원
        4.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1mol%Na2Ti6O13doped 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 (BBNT-NT001) ceramics sintered at various temperatures from 1200oC to 1350oC wereinvestigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature (TC). Resulting thermistors showeda perovskite structure with a tetragonal symmetry. When sintered at 1200oC, the specimen had a uniform microstructure withsmall grains. However, abnormally grown grains started to appear at 1250oC and a homogeneous microstructure with large grainswas exhibited when the sintering temperature reached 1325oC. When the temperature exceeded 1325oC, the grain growth wasinhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that Na2Ti6O13 isresponsible for the grain growth of the 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 ceramics by forming a liquid phase during the sinteringat around 1300oC. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity.All the specimens were observed to have PTCR characteristics except for the sample sintered at 1200oC. The BBNT-NT001ceramics had significantly decreased ñrt and increased resistivity jump with increasing sintering temperature at from 1200oC to1325oC. Especially, the BBNT-NT001 ceramics sintered at 1325oC exhibited superior PTCR characteristics of low resistivityat room temperature (122Ω·cm), high resistivity jump (1.28×104), high resistivity temperature factor (20.4%/oC), and a highTc of 157.9oC.
        4,000원