검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        1.
        2024.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Increasing resource use is the primary motivator for the development of technology industries, which is leading to severe consequences, such as the release and disposal of radioactive waste containing radionuclides in the environment. Cesium (137Cs) is one of the most hazardous radionuclides in the environment. In particular, the steel manufacturing process produces hazardous waste in the form of electric arc furnace dust contaminated with 137Cs. In this study, the tolerances of five legume species to different activity concentrations of 137Cs in both seed germination and initial seedling growth were compared. To determine 137Cs tolerance, several parameters related to the growth and development of legumes were measured. Among the five legumes studied, Crotalaria juncea L. was the most 137Cs tolerant at 50,000 Bq·L−1. Sesbania javanica Miq. and Vigna mungo L. Hepper were moderately tolerant to 30,000 Bq·L−1 137Cs. After 10 days, the stress tolerance indices in all legume species decreased by more than 50% at activity concentrations greater than or equal to 20,000 Bq·L−1 137Cs. This approach allows the selection of desirable traits, making more-effective application possible in the phytoremediation of 137Cs through stress tolerance. In conclusion, legumes are promising candidates for the phytoremediation of environmental pollutants.
        4,200원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 캐릭터 아크(Character Arc)와 트랜스 아이덴티티(Trans Identity) 이론을 결합하여 영화 <사바하> 주요 인물들의 내적 변화와 정 체성 전환 과정을 분석하였다. 연구 목적은 캐릭터 중심 서사 중 다중 캐릭터 간 상호작용이 서사의 복합성과 입체성을 증진하는지를 규명하는 데 있다. 연구 결과, 첫째, 박웅재는 종교적 회의와 세속적 욕망을 극복 하며 진정한 신앙으로 귀환하는 긍정적 변화 아크를 완성하였다. 둘째, 정나한은 거짓된 신념에서 벗어나 자신의 정체성을 재정립하였다. 셋째, 김제석은 거짓된 신념에 집착한 끝에 자멸하며 부정적 변화 아크의 전형 을 보여준다. 넷째, 세 캐릭터 간의 상호작용은 각자의 정체성 전환을 촉 진하며 서사의 주요 동력으로 작용하였다. 인물 간 상호작용이 정체성 변화와 서사 구조의 복합성을 심화시키는 과정을 구체적으로 규명했으 며, 창작 실무에서 설득력 있는 캐릭터 구축을 위한 가이드를 제공한다. 나아가 후속 연구로 캐릭터 아크와 트랜스 아이덴티티의 적용을 다양한 장르와 서사체로 확장할 필요성을 제안한다.
        6,000원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study involved the heterogenization of a binder pitch (BP) using a small amount of nanocarbon to improve physical properties of the resulting graphite electrode (GE). Heterogenization was carried out by adding 0.5–2.0 wt.% platelet carbon nanofiber (PCNF) or carbon black (CB) to a commercial BP. To evaluate the physical properties of the BPs, we designed a new model graphite electrode (MGE) using needle coke as a filler. The heterogenized binder pitch (HBP) with PCNF or CB clearly increased the coking value by 5–13 wt.% compared to that of the as-received BP. Especially, the model graphite electrodes prepared with HBPs containing 1.0 wt.% PCNF or CB showed significantly improved physical properties compared to the control MGE from the as-received BP. Although the model graphite electrodes prepared with HBPs showed similar properties, they had smaller pore sizes than the control. This indicates that heterogenization of the BP can effectively decrease the pore size in the MGE matrix. Correlating the average pore sizes with the physical properties of the model graphite electrodes showed that, for the same porosity, matrices formed by the HBP with a smaller average pore size can effectively improve the apparent density, tensile strength, and oxidation resistance of the model graphite electrodes.
        4,500원
        5.
        2023.11 구독 인증기관·개인회원 무료
        As the decommissioning of domestic nuclear power plants (Gori Unit 1 and Wolseong Unit 1) becomes more visible, many research projects are being conducted to safely and economically decommissioning of domestic nuclear power plants (NPPs). After permanent shutdown, decommissioning of NNPs proceeds through decontamination, cutting of main equipment, waste disposal and site restoration stages. And various technologies are applied at each stage. In particular, remote cutting of neutron induced structures (RV, RVI, etc.) is a technology used in developed countries in the cutting stage, and remote cutting has been evaluated as a core technology for minimizing workers’ radiation exposure. Generally, remote cutting technologies are divided into mechanical/thermal/electrical cutting. Among various thermal cutting technologies, plasma arc cutting (PAC) is more economical and easily to remote control than other cutting technologies, and is also effective in cutting STS304 plates. PAC is a thermal cutting technology that melts the base material at the cutting area with a plasma arc heat source and removes melted material by blowing it out with cutting gas. The cutting quality depends on the stand-off distance and power (current), material thickness, cutting speed, etc., while double arcing will occur if the cutting conditions are not suitable. A monitoring system that can confirm double arcing during remote cutting is necessary because double arcing can reduce cutting quality, increase secondary waste (increase kerf and aerosol), and cause non-cutting. In this study, we used an ultrahigh-speed camera equipped with a band-pass filter to capture clear arc shapes, and measured voltage waveforms with a data acquisition system. We studied a monitoring method that can confirm the occurrence of double arcing by synchronizing the obtained arc shape and voltage waveform, and the effects of double arcing on the STS304 plates. The results of this study are expected to be helpful in the development of the remote cutting process using plasma arc cutting when decommissioning of domestic NPPs.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Due to the necessity of isolating spent nuclear fuel (SNF) from the human life zone for a minimum of 106 years, deep geological disposal (DGD) has emerged as a prominent solution for SNF management in numerous countries. Consequently, the resilience of disposal canisters to corrosion over such an extended storage period becomes paramount. While copper exhibits a relatively low corrosion rate, typically measured in millimeters per million years, in geological environment, special attention must be directed towards verifying the corrosion resistance of copper canister welds. This validation becomes inevitable during the sealing of the disposal canister once SNFs are loaded, primarily because the weld zone presents a discontinuous microstructure, which can accelerate both uniform and localized corrosion processes. In this research, we conducted an in-depth analysis of the microstructural characteristics of copper welds manufactured by TIG-based wire are additive manufacturing, which is ideal for welding relatively large structures such as a disposal canister. To simulate the welds of copper canister, a 12 mm thick oxygen-free plate was prepared and Y and V grooves were applied to perform overlay welding. Both copper welding zones were very uniform, with negligible defects (i.e., void and cracks), and contained relatively large grains with columnar structure regardless of groove types. For improving microstructures at welds with better corrosion resistance, the effect of preheat temperature also investigated up to 600°C.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Metals such as stainless steel and alloy 600 are used as structures and materials in nuclear power plants due to their excellent mechanical properties and heat resistance. And recently thermal and mechanical cutting technologies are being actively researched and developed for dismantling NPP. Among them, the mechanical cutting method has the advantage of less secondary waste generation such as fume and fine dust, but according to the wider the cutting range, the reaction force and the cutting device size are increased. In this paper, plasma assisted milling has been proposed to reduce the reaction force and device size, and the plasma efficiency was measured for SUS 316L. The plasma torch was operated at the level of 3 to 4 kW so that it was heated only without cutting. And the feedrate was set at 150 to 250 mm/min. The test confirmed that the plasma efficiency was 35% about SUS 316L, and it is expected that the numerical analysis using these test results can be used as basic data for plasma assisted milling.
        8.
        2023.05 구독 인증기관·개인회원 무료
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Nowadays, transferred type arc plasma torches have been widely present in industrial applications, in particular, using melting pool of electrically conducting materials such as arc furnace, welding and volume reduction of radioactive wastes. In these applications, the melting pools are normally employed as an anode, thus, heat flux distributions on anode melting pool need to be characterized for optimum design of melting pool system. For this purpose, we revisited the one-dimensional model of the anode boundary layer of arcs and solved governing equations numerically by using Runge-Kutta method. In addition, the direct melting process of non-combustible wastes in the crucibles were discussed with the calculation results.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
        11.
        2022.10 구독 인증기관·개인회원 무료
        Present study investigated the waste form integrity of melted products generated from PAM-MSO system, which is proposed and developed to compensate the drawbacks of each system. The disposal suitability of the melting solidification products generated from the plasma arc melting treatment of pulverized cement debris spiked by Pb, Cd and Cs, as indicators of typical hazardous metals and radionuclides existed in the low-level mixed waste in the KHNPPs. The final waste form obtained by the test was evaluated for suitability for disposal. The compressive strength was 261.10 MPa, showing much higher values when compared to other waste form products. The compressive strength of both the sample after irradiation with 107 Gy radiation and that after long-term submersion test (90 days) satisfied the disposal criteria. As a result of the leaching test conducted according to the ANS 16.1 test method, it was confirmed that the leaching index satisfies the disposal criteria.
        12.
        2022.10 구독 인증기관·개인회원 무료
        This facility was developed to investigate the characteristics of metal oxide and to secure operational technology through hydrogen supply to 100 kW capacity transferred arc plasma torch and melting furnace under anoxic conditions. Besides, the emission of pollutants generated during operation was minimized by burning the exhaust gases in the next combustion chamber and by applying a SNCR, a scrubber, etc. The main target object was determined as a metal oxides generated as radioactive wastes when dismantling the nuclear power plant. The metal alloy was produced by supplying hydrogen during the melting process of the metal oxide. The reaction equation is as follows: Fe + M(Metal)On + H2(Gas) → FeM + Slag + H2O In this paper, operating conditions according to the melting temperature and hydrogen supply with iron and metal oxides were investigated, and the chemical characteristics of the alloyed metal and Slag were analyzed. The result of this study can be used as fundamental data for the treatment and disposal of metal wastes.
        13.
        2022.10 구독 인증기관·개인회원 무료
        In the present work, a three-phase AC arc plasma torch system is proposed to separate inorganic radioactive materials from the organic liquid waste. For this purpose, first, assuming the resistance of arc plasma ranges between 0.1 and 0.2 ohm, we designed a three-phase AC arc plasma power supply with the power level of 20 kW. Then, a three phase arc plasma torch consisting of three carbon rods with the diameter of 20 mm was designed and mounted on a cylindrical combustion chamber with the inner diameter of 150 mm. Detail design and basic performance of the plasma system were presented and discussed for application to the treatment of radioactive slurry wastes.
        17.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to investigate the effect of an aluminum chromium nitride (AlCrN) coating on tool wear and hole quality in the conventional drilling process of carbon fiber-reinforced plastic (CFRP) composites, titanium alloy (Ti), and CFRP–Ti stack workpieces popular in the aerospace industry. The advanced arc plasma acceleration (APA) method of physical vapor deposition (PVD) was used for all AlCrN coatings. The drilling experiments were conducted with uncoated drills as well as AlCrN-coated drills. When drilling CFRP only, the AlCrN coating was removed at the drill cutting edges and the margin area, which suggests the carbon fibers abraded the coatings. When drilling Ti only, the AlCrN-coated drill mitigated the Ti adhesion formation, which resulted in less tool wear. In addition, hole quality for both CFRP and Ti was improved when the coating was used versus the uncoated tool. The machinability of CFRP–Ti stacks in the drilling process was improved by utilizing the advanced AlCrN coating on the WC tool in terms of drilling forces and hole quality parameters such as average hole size, average hole roundness, hole surface roughness, and Ti exit burr height.
        4,200원
        20.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.
        4,000원
        1 2 3 4 5