검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        2.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the flux used in the batch galvanizing process, the effect of the component ratio of NH₄Cl to ZnCl₂ on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH₄Cl•3ZnCl₂ show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.
        4,000원
        3.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.
        4,000원
        4.
        2020.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3- Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 m. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.
        4,000원
        5.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the lasercladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 μm and 60.6 μm for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 μm (HVOF MoB-CoCr coating), 204.83 μm (laser cladded T- 800), and 226.33 μm (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.
        4,000원
        7.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at 1,100oC for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while Al8Cr5 and Cr3Si phases are also observed in the 5% Si alloy. In the high Si alloy, only Cr and Cr3Si phases remain after the isothermal heating at 1,100oC. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.
        3,000원
        8.
        2017.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. Al-(0-10 %)Al2O3 composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the Al2O3 particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape Al2O3 particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of Al2O3, hardness gradually increased in both spray coating processes. In conclusion, an Al-Al2O3 composite coating layer with good mechanical properties was successfully produced by warm spray.
        4,000원
        9.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.
        4,000원
        10.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study attempts to manufacture a Ni-Cr-Al-Y coating layer using a kinetic spray process and investigates the microstructure and physical properties of the manufactured layer. The Ni-22Cr-10Al-1Y (wt.%) composition powder is used, and it has a spherical shape with an average diameter of 23.7 μm. Cu plate is used as the substrate. Optical microscope, X-ray diffraction, scanning electron microscope and Vickers hardness test are carried out to characterize the macroscopic properties of the coating layer. Furthermore, the coating layer underwent vacuum heat treatment at temperatures of 400˚C and 600˚C for 1 hour to check the effect of heat treatment temperature on the properties. The manufactured coating layer is 1.5 mm thick, and featured identical phases to those found in the powder. The porosity of the coating layer is measured at 2.99%, and the hardness is obtained at 490.57 Hv. The layer shows reduced porosity as heat treatment temperature increased, and hardness is reduced at 400˚C but shows a slight increase at 600˚C. Based on the findings described above, this study also discusses possible manufacturing methods for a Ni-Cr-Al-Y coating layer using the kinetic spray process.
        4,000원
        11.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, ceramic coatings were prepared on Al7075 aluminum alloy using microarc oxidation (MAO) process in a silicate-fluoride based electrolyte solution. The effect of OH− concentration, by adding NaOH to the solution on the microstructural and mechanical properties of the coating was investigated. Surface morphology and cross sectional view of the coating was analyzed using SEM while XRD was used to examine the phase compositions of the coatings. From XRD α-Al2O3 phase was found to be increased by adding NaOH to the electrolyte. Thereby, the hardness and the wear properties of the MAO coatings were found to be superior to those of the coatings prepared without NaOH addition or with amount maximum than 2 g/l NaOH. Moreover, the morphology of the coatings was transformed form nodule-based cluster to crater based structure with the addition of NaOH to the MAO electrolyte solution.
        4,000원
        13.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and Mg2SiO4. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.
        4,000원
        15.
        1999.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구는 0.1~1.2μm 압도분포를 갖는 미세 Al2O3를 이용하여 플라츠마 용사한 후 상업용 용사분말(Metco 105)과 용사층의 특성을 비교하였다. 미세조직은 미세 Al2O3층이 상업용분말보다 더 치밀하였고 용샤층의 평균 표면조도 (Ra)는 미세 Al2O3의 경우에 5.3μm로 상업용 분말 (Ra=8.2μm) 보다 작은 값을 보였으며, 용사층 평균 splat 두께는 1.4μm 였다. 또한 용샤층에는 많은 양의 부분 용융입자가 관찰되었다. XRD분석결과 두 분말 모두 용사층을 이루는 주된 상은 γ-Al2O3이였으며 α-Al2O3도 관찰되었다. 용사층에 존재하는 α-Al2O3의 분율은 미세 Al2O3층의 경우 8.39%. 상업용 Al2O3의 경우 13.79%이였다. 미세 경도 값은 두 분말에서 큰 차이를 보이지는 않았으나, 미세 Al2O3의 경우 큰 경도값 편차를 보였으며 따라서 미세 Al2O3층의 splat의 접합강도는 상업용 Al2O3보다 상대적으로 낮을 것으로 생각된다.
        4,000원