검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters – the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT – to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.
        4,000원
        2.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20% of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17% of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.
        4,000원
        3.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the In2S3/CIGS solar cell dramatically improved when the films were annealed at 300˚C in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the In2S3/CIGS interface. The In2S3/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the Jsc and FF values. Furthermore, the In2S3/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.
        4,000원
        4.
        2011.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu(In, Ga)Se2 (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containingCu2+, In3+, Ga3+, and Se4+ ions at −0.6V (SCE) and pH 1.8. In order to induce recrystallization, the electrodepositedCu1.00In0.81Ga0.09Se2.08 (25.0at.% Cu+20.2at.% In+2.2at.% Ga+52.0at.% Se) precursor films were annealed under a highSe gas atmosphere for 15, 30, 45, and 60 min, respectively, at 500oC. The Se amount in the film increased from 52at.% to62at.%, whereas the In amount in the film decreased from 20.8at.% to 9.1at.% as the annealing time increased from 0 (as-deposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted withthe In present in the precursor films, resulting in the formation of the volatile In2Se. CIGS precursor grains with a cauliflowershape grew as larger grains with the CuSe2 and/or Cu2-xSe faceted phases as the annealing times increased. These faceted phasesresulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the emptyspaces between the grains were not removed via annealing. Uniform thicknesses of the MoSe2 layers occurred at the 45 and60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused throughthe CIGS film. The results obtained in the present research were sufficiently different from comparable studies where therecrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.
        4,000원