탄소중립을 달성하기 위해 이산화탄소를 포집, 활용, 저장하는 CCUS (carbon capture, utilization, and storage) 기 술이 주목받고 있다. 본 연구에서는 광물 탄산화 공정을 통해 이산화탄소를 탄산염으로 고정하고, 이를 전이금속 탄산염 기반 리튬이온배터리 (LIB) 음극재로 적용하였다. CO2를 탄산염으로 고정후, 이를 이용해 FeCO3를 제작하고, rGO와 PVP와 복합 화하여 음극활물질에 적용하였다. rGO는 전기전도도를 높이고 입자의 응집을 방지해 부피 팽창을 완화했으며, PVP는 계면 활성제로서 입자 표면을 안정화하여 구조적 안정성을 강화하였다. FeCO3-PVP-rGO 복합체 기반한 음극재에 대한 전기화학 테스트를 진행한 결과, FeCO3/rGO 복합체는 1,620 mA/g의 전류 밀도에서 50 사이클 이후에도 400 mAh/g의 용량을 유지하 였다. 본 연구는 CO2를 고부가가치 배터리 소재로 전환하여 차세대 에너지 저장 기술에 기여할 가능성을 시사한다.
Artificial photosynthesis harnesses clean and sustainable solar power to catalyze the conversion of CO2 and H2O molecules into valuable chemicals and O2. This sustainable approach combines energy conversion with environmental pollution control. Non-oxide photocatalysts with broad visible-light absorption and suitable band structures, hold immense potential for CO2 conversion. Nevertheless, they still face numerous challenges in practical applications, particularly in CO2 conversion with H2O. Surface modification and functionalization play the significant role in improving the activity of non-oxide photocatalysts. Multifarious strategies, such as cocatalyst loading, surface regulation, doping engineering, and heterostructure construction, have been explored to optimize light harvesting, bandgap driving force, electron–hole pairs separation/transfer, CO2 adsorption, activation, and catalysis processes. This review summarizes recent progress in surface modification strategies for non-oxide photocatalysts and discusses their enhancement mechanisms for efficient CO2 conversion. These insights are expected to guide the design of high-performance non-oxide photocatalyst systems.
본 연구에서는 이산화탄소와 석탄을 사용하여 합성가스 CO를 생산하는 실험을 수행하였다. CO 합성특성은 KOH 촉매를 사용한 화학적 활성화 방법에 의해 조사되었으며, 제조공정은 CO2 전환 반응에서 석탄과 활성화 촉매 비율, 가스 유량과 반응온도 등과 같은 실험변수들을 분석함으로서 최적화 되었다. KOH 촉매를 사용하지 않은 경우, 반응온도 950℃와 CO2 유량 300 cc/min에서 65% CO2 전 환율을 얻었으며, 반면에 촉매를 사용한 경우 같은 반응조건에서 98.1%의 전환율을 얻었다. 석탄의 활 성화촉매 반응물의 비(석탄 : KOH = 4 : 1)가 다른 반응물 비에 대해 더 좋은 CO2 전환율과 CO 선 택도 보여줌을 알 수 있었다.
In the present, the focus is on the synthesis of nanostructured TiC/Co composite powder by the spray thermal conversion process using titanium dioxide powder has an average particle size of 50 nm and cobalt nitrate as raw materials. The titanium-cobalt-oxygen based oxide powder prepared by the combination of the spray drying and desalting methods. The titanium-cobalt-oxygen based oxide powder carbothermally reduced by the solid carbon. The synthesized TiC-15wt.%Co composite powder at 1473K for 2 hours had an average particle size of 150 nm.
In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120 for 2 hours has average particle size of 150 nm.
이산화탄소의 증가에 따른 온실가스 저감방법에 대한 연구들이 활발히 진행이 되고 있다. 이산화탄소는 지구온난화를 야기하는 대표적인 온실가스이다. 이를 저감하기 위한 방안으로는 CCS(Carbon Capture and Storage)를 예로 들 수 있다. 하지만 CCS기술은 에너지의 소비가 비교적 높은 기술이며, 분리된 이산화탄소를 안정적으로 저장하기 위한 방법과 공간의 부재가 문제가 되고 있다. 이를 보완하기 위한 방안으로 CCU (Carbon Capture and Utilization)을 예로 들수 있다. CCU기술은 금속이온이나 생물학적인 방법으로 이산화탄소를 재이용하는 기술을 의미한다. 하지만 이러한 기술의 경우도 고온(500℃ 이상), 고압(20bar 이상)의 에너지 다소비 공정이라는 것과, 고정화를 하기위한 물질들의 안정적인 공급이 뒷받침이 되어야한다는 단점을 가지고 있다. 따라서 본 연구는 종래의 CCS/CCU기술의 문제점인 이산화탄소의 저장과 고정화물 feeder의 안정적인 공급을 위하여 이산화탄소 전환 및 고정화에 대한 연구를 수행을 하였다. 또한 연구는 기존의 고온, 고압을 탈피한 상온(30℃), 상압(1bar)의 조건으로 유지를 하여 에너지의 소비가 적은 조건에서의 가능성을 실험하였다. 고정화물을 형성하기 위한 feeder는 정유・석유화학에서 발생되는 petro ash를 사용하였다. petro ash내 포함되어있는 금속양이온은 약 48%를 넘기 때문에 안정적인 탄산염의 생성이 가능할 것으로 예측을 하였다. 실험결과 이산화탄소의 전환량을 5% MEA를 기준으로 0.241 mol-CO₂/mol-MEA였으며, 생성된 탄산염은 대부분 CaCO₃의 형태를 띄는 것으로 확인하였다. 전환용액에 포함되어있는 이산화탄소는 2차 탈거과정을 통하여 대부분이 탄산염의 형태로 전환이 되었다는 것을 확인하였다. 위와같은 실험을 통하여 이산화탄소의 안정적인 저장과 산업부산물로 발생되는 ash등의 재활용이 가능할 것이라 예측할 수 있었다. 더 나아가 생성된 탄산염의 정제과정을 추가 연구하게 된다면 부가적인 이익을 창출할 수 있는 방안이라 생각한다.