국내 특수교 대부분은 사장교와 현수교로 케이블 교량 형식이다. 특수교는 규모 면에서 가장 유지관 리가 우선시 되는 사회 기반 시설물로 장기적이고 체계적인 유지관리 전략이 필요한 구조물이다. 다시 말해서는 케이블 교량은 대부분 사용 수명이 100년 이상 되는 교량으로 일반적인 중·소규모 교량의 유지관리와는 차별화된 관리가 요구되고 있다. 케이블 교량에서 구조물 상부를 지지하는 케이블은 주 요 부재이므로 구조물의 안전성을 확보하기 위해서는 케이블에 대한 철저한 유지관리가 필요하다. 진 동에 의한 피로 손상은 케이블 사용 수명을 단축하게 하는 주요 원인으로, 풍하중으로 인해 발생한 케 이블 과진동(풍우진동, 웨이크 갤로핑, 지점 가진에 의한 진동 등)은 교량의 안전성에 영향을 미쳐 붕 괴 사고로도 이어질 수 있다. 국내외적으로도 케이블 시스템의 과진동 및 이로 인한 건전성 확보 문제 가 지속해서 대두되고 있는 실정이다. 케이블 진동에 영향을 미치는 풍하중은 정적 풍하중과 동적 풍 하중을 구분할 수 있으며 풍하중 종류를 고려하여 케이블 제진 대책을 마련해야 한다. 한편, 케이블 교량 유지관리 업무에서는 구조해석과 같은 공학적인 판단뿐만 아니라 전문가 경험에 의한 판단도 중 요한 요소로 유사 교량 형식의 사례 조사에 의한 분석도 요구된다. 본 연구에서는 케이블 교량에서의 풍하중에 의한 진동 발생 원인별 사례 및 그에 따른 풍하중에 대한 제진 대책 적용 사례를 조사하였 고, 이를 통해 케이블 교량의 유지관리 업무에 활용될 수 있도록 소개하고자 한다.
In this study, a structural health monitoring system for cable-stayed bridges is developed. In the system, condition assessment of the structure is performed based on measured records from seismic accelerometers. Response indices are defined to monitor structural safety and serviceability and derived from the measured acceleration data. The derivation process of the indices is structured to follow the transformation from the raw data to the outcome. The process includes noise filtering, baseline correction, numerical integration, and calculation of relative differences. The system is packed as a condition assessment program, which consists of four major processes of the structural health evaluation: (i) format conversion of the raw data, (ii) noise filtering, (iii) generation of response indices, and (iv) condition evaluation. An example set of limit states is presented to evaluate the structural condition of the test-bed and cable-stayed bridge.
In a previous paper, ambient vibration tests were conducted on a cable stayed bridge with resilient-friction base isolation systems (R-FBI) to extract the dynamic characteristics of the bridge and compare the results with a seismic analysis model. In this paper, a nonlinear seismic analysis model was established for analysis of the bridge to compare the difference in seismic responses between nonlinear time history analysis and multi-mode spectral analysis methods in the seismic design phase of cable supported bridges. Through these studies, it was confirmed that the seismic design procedures of the “Korean Highway Bridge Design Code (Limit State Design) for Cable Supported Bridges” is not suitable for cable supported bridges installed with R-FBI. Therefore, to reflect the actual dynamic characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure is proposed that applies the seismic analysis method differently depending on the seismic isolation effect of the R-FBI for each seismic performance level.
In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the “Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges.” Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.
This paper proposes damage indices efficient on evaluating the seismic safety of cable-stayed bridges, especially dual-plane, cable-stayed bridges with H-type pylons. The research assumes that the location of accelerometers is already defined as given in the 2017 Ministry of the Interior and Safety (MOIS) guideline. In other words, the paper does not attempt to suggest optimal sensor location for the seismic safety evaluation of cable-stayed bridges. The proposed damage indices are based on those for building structures widely applied in the field already. Those include changes in natural frequencies and changes in relative lateral displacements. In addition, the study proposes other efficient damage indices as the rotation changes at the top of pylons and in the midspan of the girder system. Sensitivity analysis for various damage indices is performed through dynamic analysis using selected earthquake ground motions. The paper compares the effectiveness of the damage indices.
In this paper, an experimental study was carried out for vibration control of cable bridges with structurally flexible characteristics. For the experiment on vibration control, a model bridge was constructed by reducing the Seohae Grand Bridge and the shear type MR damper was designed using the wind load response measured at Seohae Grand Bridge. The shear type MR damper was installed in the vertical direction at the middle span of the model bridge, and dynamic modeling was performed using the power model. The tests of the vibration control were carried out by non-control, passive on/off control and Lyapunov control method on model bridge with scaled wind load response. The performance of the vibration control was evaluated by calculating absolute maximum displacement, RMS displacement, absolute maximum acceleration, RMS acceleration, and size of applied power using the response (displacement, acceleration, etc.) from the model bridge. As a result, the power model was effective in simulating the nonlinear behavior of the MR damper, and the Lyapunov control method using the MR damper was able to control the vibration of the structure and reduce the size of the power supply.
This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.
A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.
Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.
사장교 케이블은 구조적으로 휨강성과 감쇠력이 작아 풍우에 의해 쉽게 유해진동이 발생한다. 이러한 풍우진동을 저감시키기 위한 효과적인 방법으로 부가댐퍼를 장착하여 케이블의 감쇠력을 증가시키는 제어시스템이 널리 사용되어왔다. 그러나 댐퍼를 케이블의 정착부 부근에 설치할 수밖에 없는 구조적 한계로 인하여 충분한 감쇠력을 발휘하기 어렵다. 그러므로 본 논문은 수동제어시스템 보다 효과적으로 풍하중에 의한 케이블 진동을 제어하기 위한 능동제어시스템을 제안하였다. 제안된 능동제어시스템은 케이블의 정착단에 베어링 장치를 장착하여 케이블 단부에서 횡방향 변위가 가능하도록 모델링 하였으며, 앵커리지 내부에 장착된 능동댐퍼를 이용하여 적절한 제어력을 제공하도록 하였다. 능동제어를 위하여 최적제어 이론을 이용 LQG 조정기를 설계하였으며, 수치해석은 실제 교량인 서해대교의 최장 케이블을 대상으로 하여 기존의 댐퍼 시스템과 수동, 능동 댐퍼 부착에 따른 케이블의 진동제어성능을 비교 및 분석하였다. 연구결과 제안된 능동제어시스템은 효과적으로 사장교 케이블의 진동을 저감시킬 수 있는 시스템임을 입증하였으며, 기존의 부가댐퍼 시스템 보다 효과적으로 진동을 저감시킬 수 있을 것으로 사료된다.
본 연구에서는 케이블구조의 초기형상해석을 위한 새로운 탄성포물선 케이블요소(elastic parabolic cable element)를 제시한다. 이를 위하여 먼저 탄성현수선 케이블요소(elastic catenary cable element)에 대한 적합조건과 접선강도행렬 유도과정을 간략히 한다. 이를 토대로 장력이 충분히 도입되어 자중에 의한 처짐 형상이 포물선에 가깝다는 가정 하에서 무응력길이를 포함하는 탄성포물선 케이블요소의 비선형 힘-변형관계식과 접선강도행렬을 유도한다. 또한 현(chord) 방향으로 두 케이블요소의 등가 장력식을 정의한다. 본 요소의 정확성을 확인하기 위하여, 탄성현수선과 탄성포물선 케이블요소를 각각 적용하여 고정하중을 받는 사장교의 초기형상해석을 수행하고 무응력길이, 등가장력, 그리고 최대장력 결과를 비교, 분석한다.
지진응답 제어를 위하여 사장교 구조물에 장착된 준능동MR 댐퍼의 경제적 효율성 평가기법을 제안하였으며, 다양한 지반운동 특성에 대하여 비용효율성을 극대화하는 MR 댐퍼의 최적용량에 대한 분석을 수행하였다. MR 댐퍼의 비용효율성 평가를 위하여 생애주기비용 개념을 적용하였으며, 생애주기비용을 이루는 비용항목 중 손상비용의 기대값을 평가하기 위하여 지진재해로 인한 사장교의 파괴확률을 추정하였다. 사장교의 파괴로 인한 직 간접 손상비용의 규모를 매개변수로 하여 비용효율성을 평가하였다. 비용효율성 평가지수는 MR 댐퍼의 장착으로 인한 추가 투자비용과 사장교 구조물의 손상비용으로 이루어진 함수로서, 탄성받침이 사용된 기존의 설계에 대한 경제적 효율성을 나타내도록 정의하였다. 사장교의 지진응답 제어를 위하여 장착된 MR 댐퍼는 경제적으로 효율적인 대안인 것으로 나타났다. 지반운동의 특성과 손상비용 규모에 대한 MR 댐퍼의 최적 용량을 분석한 결과, 지진위험도 및 손상비용 규모가 커짐에 따라 가장 높은 비용효율성을 가지는 MR 댐퍼용량이 증가하는 것을 확인할 수 있었다.
본 논문은 강사장교의 극한강도를 다루고 있다. 강사장교의 극한강도를 평가하기 위하여 비선형 비탄성 해석 접근법과 분기점 좌굴 고유치해석 접근법인 유효접선탄성계수법을 사용하여 예제를 수행하였다. 이를 위하여 초기형상을 고려한 실용적인 비선형 비탄성 해석기법을 제시하였다. 초기형상 해석 시각 형상해석 단계마다 보-기둥 부재의 부재력 대신 개선된 구조물형상을 고려하였다. 보-기둥 부재의 기하학적 비선형은 안정함수를 사용하여 고려하였고, 재료적 비선형은 CRC 접선계수와 포물선 함수를 사용하여 고려하였다. 또한, 케이블 부재의 기하학적 비선형은 할선탄성계수 값을 사용하여 고려하였다. 본 연구에서 제안한 해석기법으로 예측된 하중-변위 곡선들이 다른 연구에 의한 결과들과 비교 검증 되었으며, 제시된 3차원 강사장교 모델들에 대하여 제안한 해석기법과 비탄성 좌굴해석을 사용하여 극한강도를 비교하였다.
다양한 지진 규모 및 주파수 특성을 가지는 지반운동에 대하여 사장교에 장착된 준능동 제어시스템의 제어효과를 분석하고 비용효율성을 평가하였다. Dyke 등에 의하여 제시된 벤치마크 사장교 제어문제에 준능동 제어시스템을 설계하였으며, LQG 최적제어기에 기반한 bi-state 제어방법을 적용하였다. 제어시스템의 비용효율성은 제어시스템을 장착하지 않은 교량의 생애주기 비용에 대한 제어시스템을 장착한 교량의 생애주기비용의 비로서 정의하였으며, 손상비용 규모와 준능동 제어장치의 가격을 매개변수로 하여 그 변화에 따른 비용효율성 평가를 수행하였다. 분석 결과, 제어시스템의 경제적 효율성은 준능동 제어장지의 가격에 크게 민감하지 않은 반면, 손상비용 규모에 따라 민감하게 변화하였다. 또한 중진규모의 연약지반과 강진규모의 견고한 지반에 해당하는 지반운동에 대하여 준능동 제어시스템의 비용효율성이 높은 것으로 평가되었다.
사장교에 발생하는 지진에 의한 진동을 감소시키기 위해 추가적인 능동/반능동 제어장치를 부착한 LRB-기반 복합 기초격리 시스템에 대한 논문이다. 복합 기초격리 시스템은 제어장치가 다중으로 작동하기 때문에 LRB가 설치된 교량 시스템과 같은 수동형 기초격리 시스템에 비해 제어 성능이 뛰어나다. 본 논문에서는, LQG 알고리듬에 의해 제어되는 능동형 유압식 가력기와 clipped 최적제어에 의해 제어되는 반능동형 자기유변 유체 (MR) 감쇠기를 추가적인 제어장치로 고려하여 추가적인 응답 감소 효과를 검토하였다. 이를 위해, 미국토목학회의 1단계 벤치마크 사장교에 LRB를 설치한 교량을 고려하였다. 수치해석 결과를 통해, 모든 LRB-기반 복합 기초격리시스템이 구조물의 응답을 효과적으로 감소시킴을 확인하였다. 또한, MR 감쇠기를 채택한 복합 기초격리 시스템은 구조물 강성의 불확실성에 대해 강인성을 보였지만 유압식 가력기를 채택한 경우에는 강인성이 부족함을 알 수 있었다. 따라서, 반능동형 추가 제어장치를 채택한 복합 기초격리 시스템의 대형 토목구조물에 대한 적용가능성이 제어 성능 및 강인성 면에서 분명하게 검증되었다
본 논문에서는 실용적 체계신뢰성에 기초한 강사장교의 안전도평가를 위한 체계적인 모형을 제안하였다. 공용중인 강사장교의 시스템 안전도평가를 위하여 요소신뢰성해석을 위한 케이블, 주형 그리고 주탑의 한계 상태모형과 각 요소들간의 조합파괴를 포함하는 주파괴경로를 정의할 수 있는 체계신뢰성해석 모형을 제안하였다. 요소신뢰성해석을 위한 수치해석기법으로는 AFOSM(Advanced First Order Second Moment) 방법을 사용하였고, 체계신뢰성해석을 위해서는 부분 ETA(partial Event Tree Analysis) 모형을 사용하였다. 제안된 방법의 타당성을 고찰하기 위하여 진도대교의 안전도 평가에 적용하였다. 부분 ETA 모혀을 사용한 체계신뢰성 평가 방법은 기존의 요소신뢰성 방법에 비해 구조물의 여용성을 충분히 반영하는 상당히 합리적이며 실제적인 결과를 보여주는 실용적인 방법으로 판단된다.
본 논문은 교통하중에 대한 강사장교의 체계신뢰성에 기초한 체계적이며 실용적인 내하력평가 및 여용성평가 모형을 제안하였다. 고량 주형과 주탑의 조합상관 한계상태에 기초한 내하력평가를 위하여 개선된 조합상관식에 기초한 LRFR(Load and Resistance Factor Rating) 방법과 신뢰성에 기초한 시스템수준의 평가를 위해서 목표체계신뢰성지수의 항으로 표현되는 등가시스템저항강도에 의한 접근방법을 제안하였다. 또한 시스템의 여용성을 정의하기 위해서 체계신뢰성해석의 결과와 내하력평가 결과를 이용한 실제적인 시스템여용성 평가방법을 적용하였다. 제안한 체계신뢰성에 기초한 평가방법은 기존의 요소신뢰성 방법에 비해 구조물의 여용성을 충분히 반영하는 상당히 합리적이며 실제적인 결과를 보여주는 실용적인 방법으로 판단된다.
본 논문에서는 사장교를 지탱하는 주요 부재인 케이블의 손상 위치를 빠르게 검출할 수 있는 손상평가 기술을 개발하고, 모형 교량 손상 실험을 통하여 개발한 기술의 손상평가 성능을 검증하고자 하였다. 손상평가 기술의 개발을 위하여 통계적 패턴 인식 기술인 마할라노비스 거리 이론을 활용하였으며, 복잡한 구조체의 손상위치 판별을 위하여 계측 위치별 획득 데이터의 변동성을 손상평가 기술에 반영하였다. 개발한 기술의 손상평가 성능을 확인하기 위하여 모형 사장교를 대상으로 손상 실험을 진행하였다. 그 결과, 개발한 손상평가 기술은 무손상 상태의 응답과 손상 상태의 응답을 활용하여 사장교 케이블 의 손상 위치를 검출할 수 있는 통계적 패턴을 제공하는 성능을 보이는 것을 확인하였다.