Phase change materials (PCM) with enhanced thermal conductivity and electromagnetic interference (EMI) shielding properties are vital for applications in electronic devices, energy storage, and aerospace. However, achieving a synergistic improvement in both thermal and EMI shielding performance remains a significant challenge. This study presents the development of phase change composites reinforced with 3D Ag foam and short carbon fibers (SCF) to address this challenge. Ag@SCF/ PCM composites were fabricated using a vacuum-assisted impregnation and curing process. Polyethylene glycol and epoxy resin formed the PCM matrix, while SCF and Ag foam created a dual-scale interpenetrating network to provide channels for phonon and electron transmission. The dual-scale network significantly improves thermal conductivity (2.24 W/m·K) and EMI shielding (69.7 dB), while maintaining latent heat storage (melting: 71.5 J/g, freezing: 68.7 J/g). These multifunctional properties make Ag@SCF/PCM composites promising candidates for applications requiring simultaneous thermal management and electromagnetic performance optimization.
Nitrite is commonly found in various aspects of daily life, but its excessive intake poses health risks like blood oxygen transport impairment and cancer risks. Accurate detection of nitrite is crucial for preventing its potential harm and ensuring public health. In this work, Cu–Co bimetallic nanoparticles (NPs) incorporated nitrogen-doped carbon dodecahedron (Cu/ Co@N–C/CNTs-X, where X denotes the carbonization temperatures) are synthesized by facile carbonization of CuO@ZIF- 67 composites. Cu and Co NPs are uniformly embedded in the carbon dodecahedron decorated by carbon nanotubes (CNTs) without agglomeration. Combining the superior catalytic from Cu and Co NPs with the electrical conductivity and stability from the carbon frameworks, the Cu/Co@N–C/CNTs-600 composite as catalyst detected nitrite concentrations ranging from 1 to 5000 μM, with sensitivity values of 0.708 μA μM–1 cm– 2, and a detection limit of 0.5 μM. Moreover, this sensor demonstrated notable selectivity, stability and reproducibility. The design of Cu/Co@N–C/CNTs-X catalysts prepared in this study can be used as an attractive alternative in the fields of food quality and environmental detection.
Biomass-derived carbon materials have attracted considerable attention in electromagnetic wave (EMW) absorption applications due to their advantages of low cost, light weight, and sustainability. Herein, bagasse-based porous carbon (BPC) was prepared by canonization and activation process from natural waste bagasse. The porous flower-like MoS2/ BPC composites were successfully prepared for efficient microwave absorption via hydrothermal process by in-situ formation of flower-like MoS2 into the porous structure of BPC. The effect of hydrothermal time and hydrothermal temperature on surface morphology, degree of graphitization, surface chemical composition and impedance matching of the prepared samples was investigated. Results demonstrated that when the hydrothermal temperature was 220 °C, and the hydrothermal time was 24 h, the obtained MoS2/ BPC sample (named as MoS2/ BPC-220 ℃) showed the minimum reflection loss value (RL) of − 41.6 dB at 8.96 GHz and exhibited effective microwave absorption bandwidth (EAB) of 4.32 GHz at a relatively thin thickness of 1.5 mm. This work provides a promising way to prepare novel biomass-derived porous carbon for strong broadband electromagnetic absorption.
Lightweighting is crucial in various industries, especially for bicycles where weight and stiffness are key. Traditional materials like steel, aluminum, and carbon each have pros and cons. This study compares hybrid tubes made of aluminum and carbon composites with conventional aluminum tubes. Using structural analysis and experimental testing, the hybrid tubes showed a weight reduction of up to 17.25% and maintained acceptable deformation levels. Finite element analysis confirmed these findings, demonstrating the hybrid tubes' potential as superior bicycle frame materials. Future research should focus on long-term durability and fatigue characteristics.
Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode ( FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g− 1 after 150 cycles and exceptional rate capacity of 444.9 mAh g− 1 at 5.0 A g− 1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g− 1 at 0.1 A g− 1 as well as good cycle stability. The plasma-engineered FeSe2@ C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.
Carbon foam composites containing hollow microspheres, reinforced by carbon nanotubes (CNTs) and montmorillonite (MMT), have been developed as the thermal insulation and EMI shielding layer. The effects of additive amounts of CNTs/ MMT on microstructure and properties of the carbon foam composites were investigated. Results showed that carbon foam composites had hierarchical porous structure, with CNTs and MMT being relatively uniformly dispersed in the composites. The addition of multiscale additives improved the mechanical, electromagnetic shielding effectiveness and thermal insulation properties of carbon foam composites. The composites containing 0.2 wt.% CNTs and 5 wt.% MMT, showed outstanding compressive strength, up to 8.54 MPa, increased by 116% to pure carbon foam. Their electromagnetic shielding effectiveness was as high as 65 dB, increased by 75%. Due to the hierarchical porous structure and MMT’s heat barrier effect, carbon foam composites presented remarkable thermal insulation properties. The minimum thermal conductivity was 0.45 W·m−1·K−1 at 800 °C. Their exceptional thermal protection can also be evidenced by ablation resistance under flame at 1000 °C. Therefore, such multifunctional carbon-based composites are ideal for use in thermal protection.
The interface area of the face sheet and core of the sandwich composite is seen as a weakness due to its low de-bonding toughness. To overcome this concern, it is critical to develop a suitable modification strategy to enhance the de-bonding toughness of the face sheet/core interface. In the present study, the corrugated core reinforced sandwich composite was prepared through co-curing and secondary bonding approaches. The MWCNTs reinforced adhesive was induced in the face sheet/core interface in different weight concentrations. The MWCNT-reinforced adhesive was prepared using the sonication technique, and its dispersion was examined using atomic force microscopy (AFM). The three-point bending test revealed that sandwich composite prepared using the co-cure method has higher flexural strength than secondary bonded samples due to better bonding face sheet and corrugated core. Compared with MWCNT-free corrugated core reinforced co-cured sandwich composites (CCSC), the flexural strength of 1 wt.% MWWCNT-induced sandwich composite was increased by 101.28%. The microstructural study showed that secondary bonded samples had extensive fibre breakage at the face plate due to early de-bonding of the face sheet and corrugated core. Furthermore, the free vibrational analysis was performed to evaluate the natural frequency and damping values of the corrugated core reinforced sandwich composite. The modal test results indicated that inducing 1wt.% MWCNTs in the face sheet/core interface had enhanced the natural frequencies of co-cured sandwich composites. The present study provides a suitable method to address the weaker de-bonding toughness concerns of face sheet/core interface region of sandwich structures.
Carbon nanomaterials (CNMs) have been the subject of extensive research for their potential applications in various fields, including photovoltaics and medicine. In recent years, researchers have focused their attention on CNMs as their high electrical conductivity, low cost, and large surface area are promising in replacing traditional platinum-based counter electrodes in dye-sensitized solar cells (DSSC). In addition to their electrical properties, CNMs have also displayed antibacterial activity, making them an attractive option for medical applications. The combination of CNMs with metal oxides to form composite materials represents a promising approach with significant potential in various fields, including energy and biology. Here, we introduce porous carbon nanospheres (PCNS) derived from Cocos nucifera L. and its ZnO composite (PCNS/ZnO) as an alternative material, which opens up new research insights for platinum-free counter electrodes. Bifacial DSSCs produced using PCNS-based counter electrodes achieved power conversion efficiencies (PCE) of 3.98% and 2.02% for front and rear illumination, respectively. However, with PCNS/ZnO composite-based counter electrodes, the efficiency of the device increased significantly, producing approximately 5.18% and 4.26% for front and rear illumination, respectively. Moreover, these CNMs have shown potential as antibacterial agents. Compared to PCNS, PCNS/ZnO composites exhibited slightly superior antibacterial activity against tested bacterial strains, including gram-positive Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus), and gram-negative Vibrio harveyi (V. harveyi) and Escherichia coli (E. coli) with MIC values of 125, 250, 125, and 62.5 μg/ml, respectively. It is plausible that the outcomes observed were influenced by the synergistic effects of the composite material.
본 연구는 탄소 기반 필러인 탄소나노튜브 (Carbon nanotube, CNT), 탄소 섬유 (Carbon fiber, CF) 와 중공유리구체 (Hollow glass microsphere, HGM)를 혼입한 전도성 복합재료가 다양한 열화 상황 에 노출된 이후의 발열성능을 조사하고 분석하였다. 대부분 상황에서 시멘트 기반의 재료들은 질산 및 황산의 침투 또는 동결융해와 같은 다양한 자연적 열화상황에 노출되게 된다. 본 연구는 기존의 이러 한 한계를 극복하고자 HGM, 전도성 필러를 혼입한 전도성 복합재료를 제조하였고, 물리적·전기적 및 열적 특성을 조사하였다. 모든 시편에서 HGM의 혼입은 시편의 밀도와 열 전도도를 감소시켰으며, 다 량의 혼입은 강도와 전기 전도도를 감소시키는 결과를 관찰할 수 있었다. 그러나 적정량의 혼입은 오 히려 전기 전도도를 향상시키는 결과를 확인할 수 있었으며, 반복적인 발열 실험에서의 성능 유지 또 한 미혼입 시편에 비하여 상대적으로 뛰어난 것을 관찰할 수 있었다. 이러한 HGM의 혼입에 대한 영 향을 더욱 자세하게 분석하기 위하여 수은압입법, 주사전자현미경, 제타전위 및 라만분광법 등의 분석 이 수행되었다.
다양한 원인으로 콘크리트 구조물에 하중이 작용되며, 이에 대한 적절한 대응이 이루어지지 않으면 구조물에 열화가 발생하고, 붕괴와 같은 대규모 재난을 초래할 수 있다. 구조물에 발생하는 하중을 감 지하는 연구는 지속적으로 이루어지고 있지만, 안전성 모니터링을 위한 혁신적인 시스템에는 여전히 부족함이 존재한다. 탄소나노튜브/폴리우레탄 복합체는 다양한 공학 분야에서 구조물 건전성 모니터링 을 위한 센서로 활용되어 센싱 효과가 뛰어난 것으로 알려져 있다. 따라서 본 연구에서는 다양한 공학 분야에서 구조물 건전성 모니터링 센서로 활용되고 있는 탄소나노튜브/폴리우레탄 복합체를 제작하여 모니터링 시스템을 개발하였다. 다양한 하중에 대한 센싱 성능을 파악하기 위해 인장, 압축, 충격 시험 을 진행하였고, 동시에 센서의 전기적 변화를 분석하였다. 추가적으로 본 센서가 구조물 표면에 적용 됨에 따라 온도, 습도와 같은 환경적 영향성을 분석하여 활용 가능성을 평가하였다. 또한, 최대 48행, 48열의 다중 계측이 가능한 IoT 기반 다중 모니터링 시스템을 개발하고, 이를 구조물에 적용된 센서 와 연계하여 스마트 모니터링 시스템으로서의 성능을 평가하였다. 이를 통해 탄소나노튜브/폴리우레탄 복합체 기반 센서는 구조물 하중 감지 시스템으로 활용이 가능할 것으로 판단되었다.
Polylactic acid (PLA) is often used in the preparation of environmentally friendly biodegradable polymer plastics, and how to improve the flame retardant performance of polylactic acid has been concerned by experts and scholars. Here, we provide a new idea, using bamboo activated carbon as the main material, and phytic acid, urea and Zn(NO3)2·6(H2O) as modifiers to produce a new type of carbon flame retardant. It has bamboo activated carbon as carbon source; second, it has P, N elements and metal oxides. The two synergistically play a flame retardant role on polylactic acid. The polylactic acid composite showed good thermal stability, from no grade optimization to V-0 in the UL-94 test, and the limiting oxygen index was also increased from 20.1 to 31.2%. The above tests show that bamboo activated carbon loaded with ZnO has a good flame retardant effect on polylactic acid.
This study aimed to fabricate composites with high thermal conductivity using diglycidyl ether of bisphenol-A (DGEBA), incorporating carbon fiber cloth (CFC) and graphene as reinforcing agents. Notably, the dispersion of graphene within the DGEBA matrix was enhanced through surface modification via a silane coupling agent. The effects of CFC and graphene addition on the impact strength, thermal conductivity, and morphology of the composites were examined. The experimental results showed that the incorporation of 6 wt% CFC resulted in a substantial (16-fold) increase in impact strength. Furthermore, the introduction of 6 wt% CFCs along with 20 wt% graphene led to a remarkable enhancement in thermal conductivity to 5.7 W/(m K), which was approximately 22 and 4 times higher than the intrinsic thermal conductivities of pristine DGEBA and the CFC/DGEBA composite, respectively. The increased impact strength is ascribed to the incorporation of CFC and silane-modified graphene. Additionally, the gradual increase in thermal conductivity can be attributed to the enhanced interaction between the acidic silane-modified graphene and the basic epoxy–amine hardener within the system studied.
In the present work, multi-walled carbon nanotubes (MWCNT) were anchored with the assistance of vinyl ester resin (VE) on the carbon fiber surfaces of conventional carbon fabrics (CCF) and semi-spread carbon fabrics (SSCF) having different areal density, ply thickness, and crimp number, respectively. Here, MWCNT anchoring means that MWCNT were physically attached on the individual carbon fiber surfaces of each fabric by coating with dilute VE and then by thermally curing it. The MWCNT anchoring effect on the interlaminar shear strength (ILSS) of CCF/VE and SSCF/VE composites was investigated. MWCNT were also simply applied (without physical attachment) to the carbon fiber surfaces of CCF and SSCF for comparison, respectively. It was found that SSCF/VE composites exhibited the ILSS higher than CCF/VE composites, regardless of simple-applying or anchoring of MWCNT, increasing the ILSS with the MWCNT concentration. It was noted that MWCNT anchoring was effective to improve not only the interlaminar adhesion but also the interfacial bonding between the carbon fiber and the matrix due to the formation of MWCNT bridges between the individual carbon fibers of SSCF, indicating that the MWCNT anchoring effect was more pronounced with SSCF than with CCF. The result of the interlaminar property was well supported by the fiber and composite fracture topography.
The combination of the two-dimensional (2D) materials g-C3N4 and MXenes in photocatalysis offers several advantages. The g-C3N4 can serve as a visible light-absorbing material, while MXenes can enhance the charge separation and transfer processes leading to improved photocatalytic efficiency. A critical review of 77 already published articles in the field of photocatalytic reactions using g-C3N4 and MXenes, such as hydrogen evolution, the reduction of carbon dioxide, the degradation of organic compounds, the redox reactions of nitrogen, was conducted. For the purpose of greater objectivity, the published results were analysed by non-parametric Mann–Whitney, Kolmogorov–Smirnov, and Mood´s median tests and visualised by box and whisker plots. It was found that MXenes can significantly improve the photocatalytic activity of g-C3N4. Adding other co-catalysts to the MXene/g-C3N4 composites does not bring a significant improvement in the photocatalytic performance. Promising results were obtained especially in the fields of hydrogen evolution and the reduction of carbon dioxide. Since the MXenes are relatively a new class of materials, there is still a big challenge for finding new photocatalytic applications and for the enhancement of existing photocatalytic systems based on g-C3N4, especially in terms of the MXenes and g-C3N4 surface and in the heterojunction engineering.
Metals are recognized as electromagnetic interference (EMI) shielding materials owing to their high electrical conductivity. However, the need for light and flexible EMI shielding materials has emerged, owing to the heavyweight and inflexible nature of metals. Carbon nanotube (CNT)/polymer composites have been studied as promising flexible EMI shielding materials because of their lightweight nature due to the low density of CNTs and their high electrical conductivity. CNTs evenly dispersed in the polymer form an electrically conductive network, and the aspect ratio of the CNTs, which are one-dimensional nanofillers, is an important factor affecting electrical conductivity. In this study, we prepared three types of multi-walled carbon nanotubes (MWNTs) with different aspect ratios and fabricated polydimethylsiloxane (PDMS)/MWNT composites. Subsequently, the electrical conductivities and electrical percolation thresholds of the three PDMS/MWNT composites with different MWNT aspect ratios were measured to analyze the behavior of electrically conducting network formation according to the aspect ratio. Furthermore, the total EMI shielding effectiveness of each composite was determined to evaluate the effect of the MWNT aspect ratio on the EMI shielding. Reflection and absorption of electromagnetic wave were measured for the PDMS/MWNT composite with the largest aspect ratio to analyze the EMI shielding mechanism of the composite. Additionally, the effects of the MWNT content on the conductivity and EMI shielding performance were examined. The results provide valuable guidance for designing polymer MWNT composites with good electrical conductivity and EMI shielding performance under different aspect ratios of MWNTs.
To improve the thermophysical properties of Al alloy for thermal management materials, the Cu-coated carbon fibers (CFs) were used as reinforcement to improve the thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of Al-12Si. The CFs reinforced Al matrix (CFs/Al) composites with different CFs contents were prepared by stir casting. The effects of the CFs volume fraction and Cu coating on the microstructure, component, TC and CTE of CFs/Al composites were investigated by scanning electron microscopy with EDS, X-ray diffraction, thermal dilatometer and thermal dilatometer. The results show that the Cu coating can effectively improve the interface between CFs and the Al-12Si matrix, and the Cu coating becomes Al2Cu with Al matrix after stir casting. The CFs/Al composites have a relative density greater than 95% when the volume fraction of CFs is less than 8% because the CFs uniform dispersion without agglomeration in the matrix can be achieved by stir casting. The TC and CTE of CFs/Al composites are further improved with the increased CFs volume fraction, respectively. When the volume fraction of CFs is 8%, the CFs/Al composite has the best thermophysical properties; the TC is 169.25 W/mK, and the CTE is 15.28 × 10– 6/K. The excellent thermophysical properties of CFs and good interface bonding are the main reasons for improving the thermophysical properties of composites. The research is expected to improve the application of Al matrix composites in heat dissipation neighborhoods and provide certain theoretical foundations.
본 논문에서는 시멘트에 탄소나노튜브를 혼입하여 전기 전도성을 향상시킨 복합재료의 압저항 특성을 딥러닝 기반 트랜스포머 알 고리즘을 적용하여 분석하였다. 훈련 데이터 확보를 위한 실험수행을 병행하였으며, 기존 연구문헌을 참조하여 배합설정, 시편제작, 화학조성 분석, 압저항 성능측정 실험을 수행하였다. 특히 본 연구에서는 탄소나노튜브 혼입 시편뿐 아니라 플라이애시를 바인더 대 비 50% 대체한 시편에 대한 제작 및 성능평가를 함께 수행하여, 전도성 시멘트 복합재료의 압저항 특성 향상 가능성을 탐구하였다. 실 험결과, 플라이애시 대체 바인더의 경우 보다 안정적인 압저항 특성결과가 관찰되었으며, 측정된 데이터의 80%를 이용하여 트랜스 포머 모델을 훈련시키고 나머지 20%를 통해 검증하였다. 해석 결과는 실험적 측정과 대체로 부합하였으며, 평균 절대 오차 및 평균 제 곱근 오차는 각각 0.069~0.074와 0.124~0.132을 나타내었다.
Recently, carbon composites have been applied to various fields. However, carbon composites have not been applied to the fishing vessel field due to its structure standards centered on glass composites. In this study, a structural strength evaluation study was conducted for the application of carbon composites in the fishing vessel field. Hull minimum thickness verification test and hull joint verification test were conducted. Compared to glass composites, the verification was based on equivalent or better performance. The results show that carbon composites can reduce the weight by 20% compared to glass composites. For hull joints, it was necessary to increase the thickness of the joint seam by the thickness of the hull to apply carbon composite. Through this study, a standard for the application of carbon composites to fishing vessel can be established.
In this work, we investigated a modern combined processing technique for the synthesis of lightweight superhard composites based on boron–carbon. We used traditional B4C with precipitates of free graphite and Al powder as initial materials. In the first stage, the composites were fabricated by the self-propagating high-temperature synthesis (SHS) with the subsequent hot pressing of the compound. Further, by the disintegration and attrition milling, the ultrafine-grained powder was obtained. We used HCl and HNO3 acids for the chemical leaching of the powder to remove various impure compounds. At the last stage, a solid composite was obtained by the spark plasma sintering (SPS) method under nitrogen pressure. The main feature of this approach is to implement different synthesis techniques and chemical leaching to eliminate soft phases and to obtain superhard compounds from low-cost materials. The phases were studied by X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy. The composites compacted by the SPS method contained superhard compounds such as B13C2, B11.7C3.3, and c-BN. The fabricated composite has an ultrafine-grained microstructure. Using a Berkovich indenter, the following nanohardness results were achieved: B13C2 ~ 43 GPa, c-BN ~ 65 GPa (all in Vickers scale) along with a modulus of elasticity ranging between ~ 400 GPa and ~ 450 GPa.