본 연구에서는 미생물 첨가에 따라 거세한우 비육우 분의 이화 학적 특성, 미생물 성상, 가스발생량 및 퇴비 부숙도에 미치는 영 향을 규명하고자 수행하였다. 이상의 결과를 종합하면, 4주 후,미생물 첨가구에서 수분, 유기물, 총질소 함량 및 pH가 낮았으며, 나머지 이화학적 특성에서는 차이가 나타나지 않았다. 유산균과 효모균 수는 증가하였으며, 대장균 수는 감소하였다. 12주 후, 미 생물 첨가구에서 유산균과 고초균 수는 높았으나, 수분, 효모 및 대장균 수는 낮게 낮았다. 하지만 암모니아, 황화수소 발생량과 퇴비 부숙도는 미생물 첨가에 의한 효과가 나타나지 않았다. 따라 서, 거세한우 분에 미생물을 첨가하면 유익균은 증가하고, 병원성 미생물은 감소하여, 비육우의 생산성은 증진될 것으로 사료되지 만, 가스 발생량 및 퇴비 부숙도에 대한 추가적인 연구는 지속적 으로 수행되어야 할 것으로 사료된다.
The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR (“Youngwoo”) was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.
본 연구는 미네랄 첨가제가 한우사 바닥에 미치는 영향을 조사하였다. 실험은 경남 진주시 소재 한우 번식우 농장에서 실시하였다. 우방당 미네랄 첨가제를 5 ㎏ 첨가하였으며, 시험구로는 무첨가구(CON); bentonite 시험구(BN); illite 시험구(IL); 및 fly-ash 시험구(FA)로 두었다. 각각의 시험구로 4개의 우방을 이용하였으며, 우방당 5마리 한우 암소를 공시하였다. 미네랄 첨가제를 처리한 후 각 우방당 5곳에서 0, 7, 14, 21 및 28일에 우분을 채취하였다. 샘플은 건물, 발효특성, 미생물 성상 및 가스 발생량 분석에 이용되었다. 전 기간 동안 건물과 acetate 함량은 미네랄 첨가제에 의한 영향은 나타나지 않았다. 무첨가구에서 7, 14 및 28일에 유기물 함량은 가장 높았고(p<0.05), 조회분 함량은 가장 낮았다 (p<0.05). IL 시험구에서는 14, 21 및 28일에 총 질소 함량이 가장 높았고(p<0.05), IL, BN 및 FA 시험구에서는 각각 14, 21 및 28일에 무첨가구보다 대장균이 낮았다(p<0.05). FA 시험구에서는 28일에 살모넬라 수가 가장 높았다(p<0.05). IL 시험구에서는 28일에 암모니아 발생량이 가장 높았고 (p<0.05), 황화수소는 전기간 동안 검출되지 않았다. 28일간 결과값을 평균하였을 때, 무첨가구에서 유기물 함량이 가장 높았고(p<0.05), 조회분 함량이 가장 낮았다(p<0.05). IL 시험구에서 총 질소 함량이 가장 높았고(p<0.05), BN 시험구는 ㏗가 가장 높았다(p<0.05). 대장균 수는 IL 시험구에서 가장 낮았고(p<0.05), 살모넬라 수는 무첨가구 보다 IL과 FA 시험구에서 더 낮았다(p<0.05). 따라서, 본 연구에서 광물질 첨가제는 분 중 가스 발생량에는 영향을 미치지 않았으나, 병원성 미생물인 대장균은 illite와 fly-ash 처리 시에 억제되는 효과가 있었다.
This study was carried out to determine the effects of nitrogen (N) fertilization levels (0, 100 and 200kg/ha) and formaldehyde (0.4,0.8 and 1.2%: w/w CM) on the chemical composition, dry matter (DM) yield and in-vitro dry matter digestibility (IVDMD) of
Insufficient herbage during the fall in the temperate areas of the world has been a serious limitation in animal production, but leafy brassicae are potentially very useful for extending the grazing season when the growth and quality of grass is poor. Thi
This study was conducted to evaluate the effect of chemical blend additives (a combination of ferrous sulfate and aluminum chloride) on decreasing pathogens in poultry litter. A total of 240 broiler chickens were assigned to 4 chemical treatments with 4 replicates of 15 chickens per pen. The four chemical blend additives were a control (no treatment), 25 g ferrous sulfate + 75 g aluminum chloride/kg poultry litter, 50 g ferrous sulfate + 100 g aluminum chloride/kg poultry litter and 100 g ferrous sulfate + 150 aluminum chloride/kg poultry litter. During the 6-wk experimental period, there were significant differences in both E.coli and Salmonella enterica for weeks 4 through 6, but not at weeks 1 and 3, respectively. Consequently, using chemical blend additives that serve as methods to control strict environmental regulations reduced pathogens in poultry litter.
Repeated additions of untreated slurry to soil affected ecology and caused high levels of heavy metal in soil and ground water. The objective of this study was to evaluate heavy metal from hanwoo slurry with ferrous sulfate (FeSO4·7H2O), aluminum sulfate [Al2(SO4)3·14H2O, alum] and aluminum chloride (AlCl3·6H2O) as a way to improve environmental management in hanwoo industry. The treatment rates, which were incorporated totally within the hanwoo slurry, were 1.0 g and 1.5 g of ferrous sulfate, alum and aluminum chloride/25 g of hanwoo slurry. The various rates of chemical additives significantly increased dry matter (9.98~13.94%) and decreased pH (3.48~6.52) compared with the controls. The use of chemical additives decreased Fe (11~29%), Al (7~12%), Zn (13~36%), and Cu (4~32%) contents, except for Fe in hanwoo slurry with ferrous sulfate and Al in hanwoo slurry with alum and aluminum chloride. In addition, the reduction in heavy metal should be associated with reduction in pH.
In conclusion, the results of this study suggest that alum and aluminum chloride additives at rate of 1.5 g were cost-effective management practice that significantly reduces heavy metal from hanwoo slurry, while it may be improved environmental management.
Recent studies have shown that alum addition to litter results in many environmental and economic advantages, such as reductions in metal runoff, lower ammonia emission and improved poultry performance. However, no research has been conducted to evaluate the effects of different types of alum on soluble metals in poultry litter. The objective of this study was conducted to investigate changes in soluble metal from poultry litter with different types of aluminum sulfate (alum) under laboratory condition. The treatments used in this study, which were mixed in the upper 1 cm of litter or sprayed onto the litter surface, were 4 g alum, 8 g alum, 8.66 g liquid alum, 17.3 g liquid alum, 11.2 g A7 (high acid alum), and 22.4 g A7 (high acid alum)/100 g litter. Applying different types of alum to poultry litter reduced (P<0.05) concentrations of soluble Fe (9 to 54%), Cu (9 to 49%) and Zn (11 to 40%), relative to untreated litter, whereas it increased Ca and Mg (P<0.05). Mean soluble Fe and Cu levels in poultry litter from different types of alum decreased in the order: 22.4 g A7 (54% and 49%) > 17.3 g liquid alum (48% and 42%) > 8 g alum (48% and 31%) > 4 g alum (28% and 10%) > 8.6 g liquid alum (10% and 9%) > 11.2 g A7 (8.6% and 9%). Additionally, the high reduction in soluble Zn concentration was 4 g alum (40%), followed by 8 g alum (26%), 22.4 g A7 (25%), 17.3 g liquid alum (23%), 8.66 g liquid alum (18%), and 11.2 g A7 (11%), respectively. In conclusion, the current studies suggest that treating poultry litter with different types of alum can be applied to reduce soluble metal (Fe, Cu, and Zn) and to develop a production to merchandise for poultry litter that would result in reduction in pollutants from these materials. Furthermore, in order to improve environmental management in the poultry industry, the use of alum, liquid alum and high acid alum all should be provided a valid means of reducing negative environmental impact.
To determine changes in nitrogen contents and optimal rates as N fertilizer, we investigated nitrogen characteristics in the slurry in the respond to the application of 0, 0.5, and 1 g of ferrous sulfate or alum /25g of dairy slurry. Additions of ferrous sulfate or alum increase total nitrogen, inorganic nitrogen, available nitrogen, and predicted available nitrogen contents in dairy slurry, resulting in reduction in pH. The best results were found in the treatment with 0.5 g of ferrous sulfate or alum /25 g of dairy slurry. In conclusion, the use of ferrous sulfate or alum as on-farm amendment to dairy slurry should be represented an alternative to improve N in dairy slurry.
The objectives of this study were conducted to determine the effects of two chemical amendments on volatile fatty acids (VFA) and nitrogen contents in poultry litter after broiler chicks were raised in poultry houses for 6 weeks. Two different additives were applied as a top dressing to the litter at a rate of AlCl₃∙6₂2O (200 g)+CaCO₃ (50 g) or Alum (200 g)+CaCO₃ (50 g)/kg of rice bran; untreated litter served as controls. Application of AlCl₃+CaCO₃ and Alum+CaCO₃ reduced total VFA contents by 67% and 51% at 6 weeks, respectively, compard to the control groups. The decrease in litter pH with two chemical treatments results in decreased proportion of VFA and increased nitrogen contents of the litter. These results indicate that treating AlCl₃+CaCO₃ and Alum+CaCO₃ to poultry litter offers the potential for reducing an environmental impact.