Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.
The incidence of stomach cancer has been found to be gradually decreasing; however, it remains one of the most frequently occurring malignant cancers in Korea. According to statistics of 2017, stomach cancer is the top cancer in men and the fourth most important cancer in women, necessitating methods for its early detection and treatment. Considerable research in the field of bioinformatics has been conducted in cancer studies, and bioinformatics approaches might help develop methods and models for its early prediction. We aimed to develop a classification method based on deep learning and demonstrate its application to gene expression data obtained from patients with stomach cancer. Data of 60,483 genes from 334 patients with stomach cancer in The Cancer Genome Atlas were evaluated by principal component analysis, heatmaps, and the convolutional neural network (CNN) algorithm. We combined the RNA-seq gene expression data with clinical data, searched candidate genes, and analyzed them using the CNN deep learning algorithm. We performed learning using the sample type and vital status of patients with stomach cancer and verified the results. We obtained an accuracy of 95.96% for sample type and 50.51% for vital status. Despite overfitting owing to the limited number of patients, relatively accurate results for sample type were obtained. This approach can be used to predict the prognosis of stomach cancer, which has many types and underlying causes.
기존 온·습도 센서와 여러 가스센서에 의해 측정 및 제어되는 돈사환경제어시스템에 돼지의 체온조 절행동에 근거한 생체정보를 이용하여 외부 환경정보를 보정한다면 보다 정밀한 축사 환경제어를 할 수 있다. 이를 위한 본 연구는 ICT기술을 접목한 스마트돈사의 정밀환경제어를 위한 기초연구로 획득된 이 미지를 바탕으로 돼지의 행동특성을 3가지로 분류하기 위한 영상처리시스템 알고리즘을 제시하고자 한 다. 공시재료는 실험돈사에서 사육되고 있는 육돈용 자돈(F2, 36~40kg) 3마리를 이용하였으며, 영상처 리를 수행하고자 천정에 설치된 카메라를 통해 획득된 이미지를 이용하였다. 영상처리를 위한 프로그램 은 Visual Studio C과 다양한 영상처리를 위해 개발된 오픈 소스 라이브러리인 OpenCV Library를 이 용하여 구현하였다. 행동분류 알고리즘은 각 돼지의 중심점 데이터, 돼지가 차지하는 면적, 돼지 사이 의 거리를 구하고자 전처리를 수행한 이미지를 RGB 색상계에서 YCrCb 색상계로 변환하였으며, 히스토 그램 평활화(Histogram Equalization), cvBlob함수를 사용하여 Labeling 알고리즘을 수행하였다. 영상 처리 결과, 검증 이미지를 대상으로 군집형태 A로 판단된 결과는 면적만 고려한 것과 거리와 면적을 같 이 고려하였을 때 인식률 95%를 나타내었다. 군집형태 B의 경우 면적만을 고려하였을 경우 65%, 면적 과 거리를 모두 고려하였을 경우 95%로 나타났다. 군집형태 C의 경우 면적만을 고려하였을 경우 25%, 면적과 거리를 모두 고려하였을 경우 100%로 나타나 환경정보 보정자료로 활용이 가능한 것으로 판단 되었다.
본 논문에서는 문턱치 기반의 영상처리 알고리즘을 이용한 인셀(in-shell)헤이즐럿과 셀드(shelled)헤이즐럿의 분류 방법을 제안한다. 헤이즐럿은 외피가 있는 인셀 형태, 내피만 있는 셀드 형태, 내피도 제거된 블랜치드 (blanched)형태, 그리고 모든 껍질을 제거한 후 알맹이를 볶아 판매하는 로스티드(roasted)형태로 제품화 된다. 그러나 생산, 이송과 가공 과정에서 외피가 쉽게 박피되기 때문에 각 단계별로 제품을 판매하기 위해서는 일차적으로 인셀 헤이즐럿과 셀드 헤이즐럿을 구별하여 제품화하는 것이 필요하다. 따라서 본 논문에서는 각 단계의 헤이즐럿 표면에 대한 영상처리 기반 분석을 바탕으로 18개의 문턱치 기반의 선별인자를 얻고 이를 바탕으로 실시간 선별이 가능한, 인셀 및 셀드 헤이즐럿의 분류 알고리즘을 제안한다. 제안한 방법을 선별에 적용한 결과 인셀 헤이즐럿의 선별 정확 도는 98%이며 나머지 셀드 헤이즐럿의 선별 정확도는 94%를 보였다.
효율적인 악취관리를 위해서는 민원지역에서 발생한 악취를 분류하고, 그 악취원을 분 석해야 한다. 이를 위해서는 민원지역에서 발생한 악취를 나타낼 수 있는 악취대표패턴과 악취원의 냄새가 필요하다. 이에 본 논문에서는 민원지역의 악취분류를 위해 k-mean 알고리즘을 이용하여 악취데이 터에 대한 군집화를 수행하였다. 그 결과 생성된 악취대표패턴과 미리 측정된 악취원별 냄새와의 유사도를 비교하여 악취에 대한 분류를 수행하였다. 또한, 대기 중에서 여러 악 취가 섞였을 경우를 고려하여 non-negative least square를 이용하여 해당 악취에 대해 책임 이 있는 하나 이상의 악취원과 기여도를 추적하였다. 이러한 본 연구의 성과는 악취 관련 민원해결에 기여할 것으로 사료된다.
A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's λ, D&B(Rij) & Tou are discussed.
This paper proposes a pattern recognition and classification algorithm based on a circular structure that can reflect the characteristics of the sEMG (surface electromyogram) signal measured in the arm without putting the placement limitation of electrodes. In order to recognize the same pattern at all times despite the electrode locations, the data acquisition of the circular structure is proposed so that all sEMG channels can be connected to one another. For the performance verification of the sEMG pattern recognition and classification using the developed algorithm, several experiments are conducted. First, although there are no differences in the sEMG signals themselves, the similar patterns are much better identified in the case of the circular structure algorithm than that of conventional linear ones. Second, a comparative analysis is shown with the supervised learning schemes such as MLP, CNN, and LSTM. In the results, the classification recognition accuracy of the circular structure is above 98% in all postures. It is much higher than the results obtained when the linear structure is used. The recognition difference between the circular and linear structures was the biggest with about 4% when the MLP network was used.
최근 청소년들의 인터넷 및 스마트폰 과도한 사용이 사회적 이슈가 되어왔다. 작업에 대한 몰입 수 준은 좋은 결과물을 만들 수 있는 긍정적 효과와 과 몰입 같은 부정적 효과를 모두 가지고 있다. 본 연구는 심혈관 반응 기반의 몰입 상태를 판단하는 알고리즘을 개발하고자 하였다. 피험자들은 무 자극 상태, 그리고 몰입을 유발하기 위한 패턴 맞추기 게임을 수행하였고, 몰입 수준을 제공하기 위해 협력 과 경쟁 태스크로 나누어 실험 디자인 하였다. 각 태스크에 따라 심박과 진폭의 상관성을 분석하고 다 항식 회귀 분석을 통해 회귀식 및 정확도를 확인하였다. 결과는 게임 태스크일 때, 심박과 진폭은 양 의 상관성을 보였으며 무자극일 때 음의 상관성을 보였다. 개발된 다차항 회귀식으로 게임 태스크와 무 자극을 구분하는 정확도는 평균 89%의 정확도를 보였다. 태스크간의 차이는 76.5% 정확도를 확인 하였다. 본 연구는 실시간으로 몰입 수준을 정량적으로 평가하는데 사용될 수 있을 것으로 기대된다.