In this paper, durability verification of forged wheels for automobiles were performed using the finite element method for bending fatigue analysis and impact analysis. In addition, the durability analysis environment of forged wheels was implemented. By analyzing the stress distribution on the surface of the forged wheel, the area with a high possibility of breakage was identified and improved. The durability analysis of the initial model forged wheel was performed by bending fatigue analysis and impact analysis, The stress distribution of the forged wheel surface was analyzed through the analysis results of the initial model. and the spokes, flanges, hubs, and rear parts are less likely to be damaged were cut to reduce the weight by about 10%, and the reliability of the improved model was confirmed.
Recently, the demand for reliability verification is increasing while designing and manufacturing molds using injection molding computer aided engineering(CAE). When performing flow analysis verification, a spiral mold is produced and compared with CAE. Because of the spiral shape, we needed a comparative evaluation with the flow distance of products with different forms. So, we compared the weight and flowed length using CAE. Variables are the change in the width of the spiral shape and the shape of the bar and plate. When the width of the spiral shape is 23mm rather than 15mm, the flow distance flows 30∼70mm more, with a maximum difference of 13%. As a result of comparing the spiral shape and the long square shape with the same width, the spiral shape had a flow distance of 60 to 105mm further, and a difference of up to 28% was found. As a result of comparing the plate shape and the spiral shape with a 15mm width product, the spiral shape has a flow distance of 310∼380mm further, and a difference of up to 82% is different.
The vehicle weight and alternative light materials development like aluminum alloys are hot issues around the world. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger suspension links have been studies without sacrificing the safety of automotive components. Therefore, in present study, the structure analysis of the torque strut links made by aluminum alloys (A356) was performed by using CAE (computer aided engineering) to investigate the light weight design process from the reference of the rear suspension torque strut link which was made by STKM11A steel and was already proven in the commercial market. Especially, the simulated maximum von Mises stresses after strength analysis were normalized as fatigue limit and these were converted to the WF (weight factor) of the same type as the fatigue safety factor suggested and named like that in present study. From these, it was suggested that the fatigue properties of the torque strut could be simply predicted only from this static CAE simulation.
In order to obtain the goal of the weight reduction of automobile components, the researches about lighter and stronger wheel carriers have been studied without sacrificing the safety of them. In this study, the weight reduction design process of wheel carrier could be proposed based on the variation of von-Mises stress contour by substituting an AA6061 (aluminum 6061 alloy) having tensile strength of 310 MPa grade instead of FCD600 Irons. From the stress analysis results before and after design modification, the stress relaxation was done at every given loading conditions. Therefore, it could be reached that this approach method could be well established and be contributed for light-weight design guide and the optimum design conditions of the automotive wheel carrier development.
Powder Injection Molding (PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry. With this regards, design technology of dental scaler tip PIM mold, which has complex shape, with the help of computer-aided analysis for powder injection molding process was developed. Compter aided analysis results, such as filling pattern, weldline formation, and air vent position prediction were investigated and eventually showed good agreements with experimental results.