A survey was carried out in Paraguay to investigate the prevalence and distribution of sweet potato virus diseases. Two DNA viruses, Sweet potato pakakuy virus (SPPV) and Sweet potato symptomless virus (SPSMV), and three RNA viruses, Sweet potato feathery mottle virus (SPFMV), Sweet potato virus G (SPVG), and Sweet potato virus C (SPVC), were detected. They were cloned and sequenced. Sequences were deposited in GenBank of the National Center for Biotechnology Information. Of 53 samples from which viruses were detected, SPVG was detected in 29, representing 57.6% of virus-detected samples. The second most common virus was SPFMV. It was detected in 23 samples. This is the first report of a sweet potato virus disease outbreak in Paraguay confirmed through viral sequence analysis.
Onion (Allium cepa L.) is one of the most consumed vegetables in Paraguay, playing a crucial role in the daily diet of the population. Onion production is mainly concentrated in the Eastern Region, especially in the departments of Caaguazú, Paraguarí, and Itapúa. However, despite its importance, Paraguay continues to rely on onion imports from Argentina and Brazil to meet the growing domestic demand. This dependence is concerning, as national yields are approximately 40% lower than those obtained in these neighboring countries. There are several problems affecting onion production in Paraguay. Among them, the most important problem is the lack of local varieties adapted to the country’s climate conditions. Another problem is the absence of adequate and well-defined agricultural practices. This study aims to review the agroclimatic conditions of the main production areas, as well as the production technologies currently employed and local research efforts. A significant aspect of the research is the KOPIA-IPTA (Paraguayan Institute of Agricultural Technology) cooperation project, which sought to promote innovation in onion cultivation by transferring technologies and technical knowledge. Trials of different onion varieties were conducted at three IPTA regional institute of Caacupé, Choré, and San Juan Bautista across three planting seasons. Additionally, demonstration fields in Cordillera, Paraguarí, Misiones, and San Pedro showed an increase in gross income between 145% and 438% compared to the national average. This project has demonstrated that developing appropriate technologies and farmer training are essential to improving onion production and quality in Paraguay. Furthermore, the prospect emphasizes the need for the implementation of an internal program where the main focus is the development o f appropriate technologies and their transfer to farmers to ensure sustainable and high- quality local production.
This study was conducted in the San Pedro Department to determine the impact of different soil management practices on sesame productivity. Different tillage methods (conventional deep tillage, minimum tillage, and no-tillage), crop rotations (monoculture, double, and triple rotation), various combinations of green manure, and appropriate doses of chemical fertilizers were studied. The results revealed that the no-tillage method combined with crop rotation (corn-cotton-sesame) and fertilization had the highest productivity of 1,548 kg/ha. In contrast, the conventional deep tillage method without fertilization showed the lowest productivity with 614 kg/ha. Incorporation of summer green manures (Mucuna pruriens) in minimum tillage methods with fertilization significantly improved productivity (1,010 kg/ha) in comparison with the same tillage method and fertilization but without Mucuna (720 kg/ha), which highlights the synergistic effects of combining green manures with chemical fertilizers. The treatment of winter green manures consisting of black oat + white lupine and black oat + radish has also significantly improved the productivity of sesame with 904 and 900 kg/ha, respectively, compared to the non-use of winter green manure and the use of chia, which had productivities of 695 and 298 kg/ha, respectively. The best chemical fertilization doses of nitrogen (urea 45% N), phosphorus (46% P2O5), and potassium (60% K2O) were determined through tests with increasing doses of each nutrient, maintaining 40 kg/ha as the base for the other two. The highest productivity was obtained with N, P, and K levels of 70 kg/ha each, resulting in productivities of 1,421, 1,522, and 1,486 kg/ha. However, the maximum profit compared to the input is obtained with doses of 50 kg/ha for N and 60 kg/ha for P and K, giving a productivity of 1,390, 1,510, and 1,421 kg/ha, respectively.
This article aims to compile key information to describe the current production situation of potatoes f or c onsumption and v irus- free s eed potatoes i n Paraguay, and to identify the main challenges for developing a self-sufficient production system. The study describes the climatic conditions of the production of potatoes and the national production and distribution situation, highlighting the dependence on imports for more than 90% of market demand. It analyzed the issues surrounding the production and supply of virus-free seed potatoes, which depend on imports from Argentina, averaging 799.9 tons per year. Additionally, this study collects information on virus detection in local potatoes and the risks associated with introducing viruses through imported seeds. To address these issues, the Korea Partnership for Innovation of Agriculture (KOPIA) and the Paraguayan Institute of Agricultural Technology (IPTA) cooperation project promoted the production of virus-free seed potatoes for their distribution to smallholder farmers across various country regions, strengthening the foundations for future virus-free seed potato production and distribution systems. Improving self-sufficiency in potato production in Paraguay requires an integrated strategy that includes analyzing suitable regions for seed potato production, implementing advanced technologies, and strengthening farmers’ technical capacity. Establishing virus-free seed potato production areas and securing governmental and legal support are crucial steps toward achieving sustainable seed potato production and reducing dependence on imports.
Endoplasmic reticulum (ER) stress, caused by the accumulation of misfolded or unfolded proteins, activates the unfolded protein response to maintain cellular homeostasis and is implicated in bacterial infections. This study investigated ER stress activation in THP-1-derived macrophages infected with oral bacteria Porphyromonas gingivalis , Prevotella intermedia , Aggregatibacter actinomycetemcomitans , and Streptococcus oralis at an multiplicity of infection of 50 for 4 hours. mRNA and protein expressions related to ER stress were analyzed by real-time polymerase chain reaction and Western blot, while pro-inflammatory cytokines were measured using enzymelinked immunosorbent assay. P. gingivalis induced the highest mRNA expression of XBP1 and PERK, whereas A. actinomycetemcomitans showed elevated GRP78, ATF6, IRE1α, ATF4, and CHOP. P. intermedia strongly expressed PERK, while S. oralis showed higher GRP78, PERK, ATF4, and CHOP expression. Protein analysis revealed S. oralis had the highest phosphorylation levels of eIF2α and IRE1α, while CHOP was most highly expressed in P. intermedia . Pro-inflammatory cytokine expression showed P. intermedia and P. gingivalis elicited the most TNF-α, while P. gingivalis induced the highest IL-1β levels. These findings suggest oral bacteria induce varying levels of ER stress, influencing the progression of oral infectious diseases. Targeting ER stress could offer therapeutic potential for managing inflammatory conditions like periodontitis.
In 2024, the South Korean government’s research and development budget cuts sparked significant concerns in the scientific community, prompting increased interest in international research funding opportunities. In this regard, South Korea’s upcoming participation as an Associated Country in the European Union’s (EU’s) Horizon Europe offers a timely opportunity. Horizon Europe is the EU’s flagship research and innovation program, running from 2021 to 2027 with a budget of €95.5 billion. It is structured on three key pillars: 1) excellent science; 2) global challenges and European industrial competitiveness; and 3) innovative Europe. South Korea’s direct benefits will focus on Pillar II, which emphasizes global challenges across six clusters, including health, climate, and digital innovation. It should be noted that participation in the program mandates international collaborations, typically involving consortia with diverse expertise. Meanwhile, the National Contact Points network has been expanded to support Korean researchers, offering the necessary resources to facilitate engagement with EU counterparts. By leveraging these opportunities, South Korean researchers aim to collaboratively address global challenges, thus enhancing the nation’s scientific standing.
국경 간 인수합병(Cross-border M&A)은 이중 조직 정체성과 다양한 제도적 환경을 관리하는 복잡한 통합 과제를 포함한다. 기존 연구들은 주로 국가 수준의 요인에 초점을 맞췄지만, 특히 자 회사의 경험과 같은 목표 기업의 특성에 대한 연구는 상대적으로 부족했다. 본 연구는 자회사 대 독립 기업, 국내 자회사 대 해외 자회사와 같은 다양한 목표 기업의 특성이 국경을 넘는 M&A에서 인수 기업의 주주 가치에 어떻게 영향을 미치는지 분석한다. 1994년부터 2012년까지의 국경을 넘 는 M&A 거래에 대한 이벤트 연구를 통해, 자회사의 경험이 인수 기업의 주주 가치를 증가시킨다 는 것을 발견했다. 그러나 제도적 거리가 증가할수록 국내 자회사의 경험 가치는 감소하는 경향이 있었다. 이러한 연구 결과는 국경을 넘는 M&A에서 자회사 경험의 중요성을 강조하며, 제도적 거 리가 그 효과를 어떻게 조절하는지를 보여준다. 이는 연구자와 실무자 모두에게 중요한 시사점을 제공한다.
Within the framework of a project entitled “Development of Advanced Sweet Potato Cultivation Technology for Smallholder Farmers in Paraguay” implemented by KOPIA Paraguay Center (Korea Partnership for Innovation of Agriculture) in collaboration with Paraguayan Institute of Agricultural T echnology (I PTA) d uring the period 2021-2024, r esults o f four m ain e xperiments are described in this research: selection of suitable varieties, optimal planting and harvesting times, the use of ridges, and optimal chemical fertilization doses. In the selection of suitable varieties for Paraguay, 11 sweet potato varieties were evaluated in departments of San Pedro and Misiones. As a result, varieties Andaí, Jety Paraguay, and Chaco I showed the highest productivity in San Pedro, while varieties Jety Uruguayo, Chaco I, and Taiwanés showed higher productivity in Misiones. The other three experiments were carried out in San Pedro only. Optimal planting and harvesting times were determined with three varieties: Andaí, Pyta Guasu, and Jety Paraguay. For Andaí and Jety Paraguay varieties, they should be planted in December and harvested at 122 days post planting (DPP). For Pyta Guasu, it should be planted in October and harvested at 124 DPP. Regarding productivity response with soil preparation methods, the use of ridges showed higher yields in all planting methods, with the curved method planting being the most productive. Finally, optimal chemical fertilization doses were established in order to improve the total yield. The optimal nitrogen fertilizer dose (urea 45% N) was 40 kg/ha. The optimal phosphorus fertilizer dose (triple superphosphate 45% P2O5) was 80 kg/ha and the optimal potassium fertilizer dose (potassium chloride 60% K2O) was 120 kg/ha.
Sweet potato (Ipomoea batatas L.) is an essential crop in the Paraguayan diet. It plays a crucial role in food security. It is a source of income for family agriculture. It has a significant potential to adapt to various climatic and soil conditions in Paraguay, making it a promising crop for improving productivity. However, Paraguay faces a deficit in the development of sweet potato cultivation technology, resulting in a low productivity of 5.3 ton/ha. Efforts have been made to collect and characterize sweet potato genotypes, covering a diversity of native varieties. These efforts have laid the groundwork for future sweet potato research and development. Still, ongoing research and development of strategies are needed to address existing challenges of improving genetic resource traits and developing cultivation technology and to fully exploit growth opportunities in this sector. This review summarizes sweet potato cultivation in Paraguay, focusing on several key technical aspects. It analyzes current market situation and production conditions as well as the availability of genetic materials adapted to different ecoregions. Additionally, it explores prospects for the development of advanced sweet potato crops, including the production of high-quality, virus-free sweet potato plants with improved productivity.
As part of the KOPIA Paraguay Center rice pilot villages project, conducted from July 1, 2021, to the end of June 2024, this study examined the average yield and value of paddy rice harvested between January and April 2023 in five local rice pilot villages in Paraguay: Santa Rosa, Eusebio Ayala, Coronel Bogado, Santa Maria, and Yaguaron. The CEA-5K-PUNTA variety was planted in late August 2022 and subsequently harvested from January to April 2023. The farmers in the pilot villages received information on common pests, diseases, and weeds, including instructions on timing and the number of applications required for their control. They also received technical guidance on water management and weeding methods. The study found that the average yield per hectare in the pilot villages for the CEA-5K PUNTA variety in the 2022/2023 growing season was 794.50 kg/10a, compared to 477.17 kg/10a for the conventional variety IRGA 424 in the 2019/2020 season, which preceded the project. This indicates a 66.5% increase in yield per hectare for the pilot village farmers compared to the pre-project period (2020/2021). The analysis of paddy rice production value in the pilot villages, using the Difference in Differences method, revealed a 65.1% increase. Moreover, a financial analysis was conducted based on the addition of agricultural inputs to the paddy fields during the period from the end of August 2022 to January-April 2023. The analysis showed that the total cost was US$597.25 per hectare, while the gross income was US$1,685.3 per hectare. As a result, the net profit per hectare amounted to US$1,088.05.
This study investigates consumer experiences and word-of-mouth (WOM) intentions in luxury brand pop-up stores, including standalone and department store setups. Grounded in experience economy theory, this study examines the experiential elements based on the types of pop-up stores and the relationships among consumer experience, pop-up store image, and WOM intentions for each type. Data were collected from 300 visitors to luxury brand pop-up stores between January and July 2023 and analyzed using Smart PLS 4.0. The findings reveal several key insights. First, standalone pop-up stores offer educational and escapist experiences, while pop-ups within department stores have a single identified factor of consumer experience. Second, regardless of the store type, luxury pop-up store experiences significantly influence pop-up image perceptions. Third, luxury pop-up store image drives WOM intentions for both standalone and department store pop-ups. Notably, the unique image significantly impacts solely department store pop-ups and does not influence standalone pop-ups. Moreover, image perceptions in both pop-up store types do not significantly affect brand WOM intentions. Finally, WOM intentions for pop-up stores significantly influence WOM intentions for brands. This study contributes to the theoretical understanding of consumer experiences in luxury pop-up stores, providing practical insights for stakeholders in the luxury brand industry to enhance pop-up store image perceptions and WOM intentions.
Harlequin ladybird (Harmonia axyridis (Pallas, 1773)) is an invasive species originating from Asia, posing a potential threat to the ecosystem and the wine industry in New Zealand due to wine taint, although it can also be a useful biocontrol agent. In this study, the response profiles of antennal olfactory receptor neurons (ORNs) to 32 plant volatiles were examined in male and female H. axyridis, using the single sensillum recording technique. Various types of ORNs were identified from four types of olfactory sensilla in both male and female H. axyridis, with no sexual dimorphism. The most abundant type of sensilla contained two ORNs exhibiting highly specialized responses to methyl benzoate and β-caryophyllene, respectively. Another type of sensilla also contained two specialized ORNs, one responsive to geranyl acetate and the other to some aromatic compounds such as 2-phenylethanol, benzyl acetate, methyl benzoate, and methyl phenylacetate. In contrast, two other types of sensilla contained broadly tuned ORNs, one containing ORN(s) responsive to six-carbon alcohols such as (Z)-3-hexen-1-ol, 1-hexanol, and isomers of 2-hexen-1-ol as well as some other non-alcohol green leaf volatiles, and the other containing ORN(s) exhibiting responses to β-myrcene, geraniol, linalool, nerol, benzyl acetate, and methyl phenylacetate. This study suggests that H. axyridis possesses a set of ORNs specialized for specific plant volatiles, providing insights into the olfactory communication system of this species and potential volatiles to be used for trapping this insect.
Spodoptera 속의 담배거세미나방, 열대거세미나방 및 파밤나방은 여러 나라에 분포하는 광식성 해충으로, 본 연구에서는 이들의 페로몬 및 식물냄새물질과 관련한 화학통신시스템에 대해 이해하기 위해 냄새감각기의 종류와 분포, 냄새활성물질 동정 및 야외행동 반응에 대한 연구를 진행하였다. 주사전자현미경 관찰을 통해, 세 종 나방의 암, 수컷 촉각에 여러 종류의 냄새감각기가 존재하며, 형태적으로 구분되는 종특이적 또는 성특이적 냄새감각기들이 존재한다는 것을 확인하였다. GC-EAD 실험을 통해 세 종 나방에 냄새활성을 나타내는 식물 냄새물질과 페로몬 관련 물질들을 동정하고, 이들을 개별 또는 조합하여 야외 트랩실험을 통해 행동활성을 검정 한 결과, 이 중 여러 물질이 담배거세미나방과 파밤나방의 성페로몬에 대한 유인행동 반응을 저해하는 것을 알 수 있었다. 열대거세미나방은 발생이 저조하여 야외에서의 행동반응을 확인할 수 없었다.
Sensory electrophysiological recording techniques such as EAG (electroantennogram), GCEAD (coupled gas chromatograph-electroantennogram detection) and SSR (single sensillum recording) have been useful in the chemical ecology studies of insects and plants. Numerous pheromones and other semiochemicals have been identified through GCEAD analysis, and the response profiles of antennae and individual olfactory receptor neurons have been characterized by using EAG and SSR techniques. In this talk, the practical aspects of these techniques are presented in detail. Standard setup and procedure of each electrophysiological recording technique, and important parameters and proper data analysis methods will be introduced as well as its applications. Common mistakes and limitations of these techniques will also be discussed.
자생 부추속 식물 중 강부추(Allium thunbergii for. rheophytum ined.)와 갯부추(A. pseudojaponicum Makino)는 관상용, 식 용 및 약용자원으로 가치가 있으나 육묘를 위한 생육환경조건 구명이 미비하여 연구할 필요성이 있다. 본 연구는 강부추와 갯부추의 육묘에 미치는 플러그 셀 크기, 차광률, 시비처리에 따른 영향을 구명하기 위하여 실험을 수행하였다. 강부추와 갯부추를 육묘한 결과, 플러그 셀 크기에서는 50, 72, 105, 128, 162, 200셀 처리 중 용적이 가장 큰 50셀에서 초장, 엽 수, 근수, 그리고 근장의 생육이 우수하였다. 그러나 생산비용 과 플러그 육묘의 효율성을 고려하여 105셀 이상의 플러그 트레이 중에서 선택하여 육묘하는 것이 효과적이라 판단된다. 차광률에 따른 유묘는 0, 30, 60, 90% 처리 중 30~60% 차 광처리에서 초장, 근수, 그리고 근장이 유의적으로 높게 측정 되어 생육이 양호하였다. 시비처리에서 생중량과 건중량을 제 외한 생육지표를 검토했을 때, 강부추의 적정 시비처리는 속 효성 고형비료(DO-PRO) 0.1g, 갯부추는 속효성 액체비료 (Peters) 주 1회 8mL 엽면시비처리였고 두 종 모두 속효성 시비처리가 효과적이었다. 강부추와 갯부추의 초기 생육에는 30~60% 차광처리가 된 재배플롯에서 원예상토가 충진된 128셀 플러그 트레이에 종자를 파종한후, DO-PRO 0.1g 또 는 Peters 8mL를 주 1회 엽면시비하면서 재배하는 것이 효 과적이라 판단된다.