In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.
In this paper, a new waffle-shaped(WAS) precast concrete panel was developed through the geometrical modification of the conventional double tee panel. It is a one-way joisted panel with a shallow depth and a boxed shape by wide edge beams. To investigate the structural performance of the connections between W AS panels, loading tests called by WIW were performed at the connections along short edges of two WAS panels. WIW tests were executed according to two different width of shear key(50mm and 80mm) and three types of reinforced topping concrete(wire-mesh alone, wire-mesh plus HD 10, and wire-mesh plus HD13). As a result, the grouting width of shear keys did not act on the ultimate behaviors significantly, and the flexural strength of WIW connections along the long edges of W AS panels was superior to nominal flexural strength. The connections with proper details of steel reinforcement can distribute the positive bending moment at mid-span of W AS panels to the negative moment, which is useful for efficient member design.
강-콘크리트 합성구조의 성능을 확보하기 위해서는 전단연결재가 설치된 전단연결부에 대한 전단강도 분석이 필수적이다. 전단연결부의 전단거동을 효율적으로 예측하기 위하여, 전단연결부의 push-out test에 대한 유한요소해석을 수행하였다. 유한요소해석에는 범용 프로그램인 ABAQUS가 사용되었으며, 대상 실험체는 Y형 전단연결재가 적용된 강-콘크리트 전단연 결부이다. 유한요소해석에서는 대상 실험체를 구성하는 재료들의 비선형성을 고려하였고, 비선형해석의 수렴문제를 해결하기 위하여 준정적해석을 사용하였다. 본 연구에서 수행된 유한요소해석 결과를 바탕으로 하중-변위곡선과 전단강도를 기존 실험결과와 비교한 결과, 준정적해석을 이용한 유한요소모델은 기존 실험결과를 잘 반영하는 것을 확인하였다.
For PHC pile, mechanical connection joints can be essential to connect PHC piles over 15m in length for deep foundation. This study was examined flexural capacity of PHC pile connected with high-performance connection device. To examine flexural capacity of PHC pile, two PHC piles with 5m length were connected using ring-type connecting plate developed recently. Its connection capacity and failure mode were evaluated through four-point flexure test.
In the nuclear power plant, safety-related structures have been used above No. 11 rebar. It needs to mechanical connection device to join RC to SC walls because ACI 349 presents that lap splices shall not be used for bars larger than No.11 bar. The tensile performance tests were performed to confirm structural integrity on the mechanical connection device. But performing the tests in accordance with various connection cases has limitations, such as time or cost. Therefore, computational analysis methodology is developed in order to verify structural integrity for various connection cases.
In this Study, the performance of the connection of Transfer-beam system suggested in the previous study was evaluated by the quasi-static test. The test model was applied to Top and Seat Angle Connection and modified SAC Protocol. The performance of the connection obtained by quasi-static test was shown in P-Δ and M-θ curve graph.
Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.
In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.
In this study, a new type of the embedded column connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Four full scale specimens for the proposed connections were constructed and tested. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200mm of embedment length was proper for the given test specimens in this study.