검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 240

        3.
        2025.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study compares the performance of various convolutional neural network (CNN) models for building an automated deep learning-based letter screening system targeting letters received by inmates in correctional institutions. The models evaluated include well-known architectures such as MobileNet, ResNet, and Inception, as well as recently proposed lightweight models such as ResMobileNet and IGSe, along with GroupConv and SE. Each model was trained on image data containing the Korean word for "knife" ("칼") to assess performance in terms of accuracy, processing time, and model compactness. A total of 1,197 letter image samples were used in the experiment, including 1,140 images with normal words and 57 images containing the target word. The experimental results showed that the MobileNet model had the shortest processing time, making it suitable for real-time applications, while the IGSe model achieved the highest accuracy, demonstrating optimal performance for letter screening tasks. This study suggests that deep learning-based screening techniques can be effectively applied to enhance digital security in the management of inmate correspondence within correctional institutions.
        4,300원
        4.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a weighted ensemble deep learning framework for accurately predicting the State of Health (SOH) of lithium-ion batteries. Three distinct model architectures—CNN-LSTM, Transformer-LSTM, and CEEMDAN-BiGRU—are combined using a normalized inverse RMSE-based weighting scheme to enhance predictive performance. Unlike conventional approaches using fixed hyperparameter settings, this study employs Bayesian Optimization via Optuna to automatically tune key hyperparameters such as time steps (range: 10-35) and hidden units (range: 32-128). To ensure robustness and reproducibility, ten independent runs were conducted with different random seeds. Experimental evaluations were performed using the NASA Ames B0047 cell discharge dataset. The ensemble model achieved an average RMSE of 0.01381 with a standard deviation of ±0.00190, outperforming the best single model (CEEMDAN-BiGRU, average RMSE: 0.01487) in both accuracy and stability. Additionally, the ensemble's average inference time of 3.83 seconds demonstrates its practical feasibility for real-time Battery Management System (BMS) integration. The proposed framework effectively leverages complementary model characteristics and automated optimization strategies to provide accurate and stable SOH predictions for lithium-ion batteries.
        4,300원
        5.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fault detection in electromechanical systems plays a significant role in product quality and manufacturing efficiency during the transition to smart manufacturing. Because collecting a sufficient number of datasets under faulty conditions of the system is challenging in practical industrial sites, unsupervised fault detection methods are mainly used. Although fault datasets accumulate during machine operation, it is not straightforward to utilize the information it contains for fault detection after the deep learning model has been trained in an unsupervised manner. However, the information in fault datasets is expected to significantly contribute to fault detection. In this regard, this study aims to validate the effectiveness of the transition from unsupervised to supervised learning as fault datasets gradually accumulate through continuous machine operation. We also focus on experimentally analyzing how changes in the learning paradigm of the deep learning model and the output representation affect fault detection performance. The results demonstrate that, with a small number of fault datasets, a supervised model with continuous outputs as a regression problem showed better fault detection performance than the original model with one-hot encoded outputs (as a classification problem).
        4,000원
        6.
        2025.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed a deep learning-based software module for classifying the ripeness of bananas in real time as they move along a conveyor belt. A total of 5,286 images annotated with three ripeness stages, namely unripe, ripe, and overripe, were divided into training, validation, and test datasets at a ratio of 88:8:4. The datasets were used to train YOLOv5s and YOLOv5l object detection models over 50 epochs. The model performance was evaluated using box loss, object loss, class loss, and mean average precision (mAP). Both models exhibited decreasing loss values approaching zero and achieved mAP, precision, and recall scores exceeding 90%, thus indicating a robust classification performance without overfitting. The software module integrated with the trained YOLOv5l model accurately identified the ripeness stage of bananas in motion on the conveyor system without misclassification. Collectively, these findings indicate that the proposed system can be effectively applied to banana-processing lines for automated and accurate ripeness-based sorting.
        4,000원
        8.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 딥러닝 기술을 활용하여 공동주택 외벽의 균열 탐지를 효과적으로 하기 위한 다양한 데이터 전처리 방법을 비교 분석하 였다. 특히, 표준 균열 데이터셋에 일반적으로 나타나지 않는 오탐균열을 식별하는 데 중점을 두고 있다. 이 연구는 탐지 정확도를 최 적화하기 위해 여러 이미지 전처리 기법을 적용한 결과를 비교한다. 객체 탐지를 위한 엣지 필터링과 RGB 색 필터 등을 이용한 색상 정규화를 결합한 방법을 집중적으로 검증하였다. 이러한 기술들은 실제 균열과 오탐균열을 구분하기 위해 적용되었으며, 이들의 탐 지 성능에 미치는 영향을 철저히 조사하였다. 효율적인 균열 탐지 모델을 찾기 위해 EfficientNet V2s 기반 모델을 적용하였다. RGB, YUV, LAB, HSV 네 가지 이미지 필터가 원본 이미지와 CLAHE 정규화된 이미지에 적용되었는데, 그 결과 단색 콘크리트 균열 탐지 에 효과적인 전통적인 정규화 방법이 공동주택 외벽 균열 탐지에는 제한적인 효과를 보인다는 것을 확인하였다. 또한, 단일 색 필터의 적용이 일관된 탐지 결과 개선 효과를 주지 않는다는 것을 밝혔다. 결국, 본 연구를 통해 다양한 이미지 정규화와 색 필터 조합의 균열 탐지 성능을 검증하였으며, 실제 균열과 오탐균열을 구분하는 탐지 성능 향상을 위해 추가적으로 다양한 접근의 연구가 필요하다는 것을 확인하였다.
        4,000원
        10.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Germination of chili pepper seeds is critical for crop yield and resource utilization. A high germination rate increases yield and effectively reduces resource wastage. This study collected 450 macroscopic images of chili pepper seeds and constructed a dataset for deep learning training through standardized germination experiments. Six deep learning models were evaluated to improve the chili pepper seed classification accuracy and germination rate. After comparing the performance of the models, MobileNet_v2 performed the best, not only having the fewest number of parameters but also achieving a 98.89% accuracy and 97.82% F1 score. The model improved the original germination rate from 87.33% to 100% on the test set, significantly optimizing the seed selection process
        4,000원
        11.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the E-commerce market grows, the importance of personalized recommendation systems is increasing. Existing collaborative filtering and content-based filtering methods have shown a certain level of performance, but they have limitations such as cold start, data sparseness, and lack of long-term pattern learning. In this study, we design a matching system that combines a hybrid recommendation system and hyper-personalization technology and propose an efficient recommendation system. The core of the study is to develop a recommendation model that can improve recommendation accuracy and increase user satisfaction compared to existing systems. The proposed elements are as follows. First, the hybrid-hyper-personalization matching system provides recommendation accuracy compared to existing methods. Second, we propose an optimal product matching model that reflects user context using real-time data. Third, we optimize Personalized Recommendation System using deep learning and reinforcement learning. Fourth, we present a method to objectively evaluate recommendation performance through A/B testing.
        4,300원
        12.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 딥러닝 영상 재구성 기법을 적용한 8개의 뇌질환군의 감마나이프 수술 계획용 자기공명영상(magnetic resonance imaging, MRI)의 유용성을 알아보고자 하였다. 연구 방법은 전이성 뇌종양, 뇌동정맥 기형, 수막종, 뇌하수체선종, 삼차신경통, 청신경초종, 맥락얼기 유두종, 해면상 혈관종, 총 8개의 질병을 진단받은 사람들의 T2 강조 영상(T2 weighted imaging, T2WI), 조영증강 T1 강조영상(contrast enhancement T1 weighted imaging, CE-T1WI)의 방법으로 검사한 MRI 영상을 SwiftMR을 이용하여 딥러닝 영상 재구성 기법인 디노이징(denoising)과 초해상도(super resolution)가 적용된 영상을 획득하였다. 이에 대한 성능 평가는 최대 신호대잡음비(peak signal to noise ratio, PSNR), 구조적 유사도(structural similarity index measure, SSIM), 감마나이프 방사선수술(gamma knife radiosurgery, GKRS)의 좌표계로 평가하였다. 그 결과, 원본영상을 기반으로 영상 품질이 개선된 영상의 PSNR과 SSIM은 높은 수치를 나타냄으로써 MRI 영상의 재구성이 문제없이 이루어졌고, GKRS의 수술 좌표계 또한 변화를 보이지 않았다. 결론적으로 딥러닝 영상 재구성 기법은 영상 품질 향상과 영상 보존에서 뛰어난 성능을 보임과 동시에 좌표계도 변화를 보이지 않아서, 딥러닝 영상 재구성 기법은 감마나이프 수술 계획에 유용하게 사용할 수 있는 기법임을 확인하였다.
        4,000원
        13.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 동적 밝기 변화 패턴이 포함된 시각 자극을 이용한 동공 빛 반사 기반 인터페이스 기술 개발을 그 목적으로 한 다. 동적 밝기 변화 패턴(휘도 0과 255 사이의 변화)의 시각 자극 10종을 개발하였고 3초 동안 시각 자극 패턴 변화를 응시 하는 태스크를 통해 동공 반응을 측정 및 분석했다. 하나의 trial은 10종의 시각 자극이 한 번씩 무작위의 순서로 제시되는 것으로 정의되었고, 전체 실험은 총 12 trials로 진행되어 각 시각 자극은 120회 반복되었다. 다섯 가지 딥러닝 시퀀스 모델 중 TCN이 가장 높은 성능을 나타내었고 10명의 실험 참가자에 대해 94.01±3.94%(56.64±6.01 bits/min)의 분류 성능이 확 인되었다. PLR은 사용자 학습 및 훈련이 요구되지 않는 직관적인 인터페이스 기술이고 다양한 시각 자극 패턴의 개발을 통 한 높은 확장성을 가지고 있다는 점에서 향후 그 가치가 주목되는 기술로 판단된다.
        4,000원
        14.
        2025.03 구독 인증기관·개인회원 무료
        병충해의 조기 발견과 그에 따른 조치의 중요성은 농업 및 생태계 보전에 있어서 핵심적이다. 그러나 초기에는 일반적인 카메라나 센 서로는 변화의 정도를 관측하기 어렵다. 이러한 한계를 극복하기 위해 초분광 모듈을 활용하여 파장대별 식물 데이터를 관측함으로써, 딥러닝 모델을 통해 가로수 식생의 건강 상태를 판별, 병충해 여부를 초기에 확인 가능하다. 이를 통해 조기에 병충해에 대해 조치함 으로써 더 큰 피해를 방지할 수 있다. 이러한 접근 방식은 농업 및 생태학 분야에서 식물의 건강을 모니터링하고 보전하는 데 적극적 으로 연구되고 있다.
        15.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후 변화로 인해 해수면 상승과 폭풍해일 발생 빈도가 증가하면서, 해안 지역에서의 재난 위험이 심화되고 있다. 본 연구는 NOAA의 GFS(Global Forecast System) 모델과 일본 기상청의 JMA-MSM(Japan Meteorological Agency Meso-Scale Model) 데이터를 기반으로 딥 러닝 기술을 활용하여 폭풍해일 예측 알고리즘을 개발하고, 두 모델에서 제공하는 대기 데이터를 입력 변수로 사용하여 예측 성능을 비 교하는 것을 목표로 한다. CNN(Convolutional Neural Network), LSTM(Long Short-Term Memory), Attention 메커니즘을 결합한 모델을 설계하고, 조위관측소의 관측 자료를 학습 데이터로 사용하였다. 과거 한반도에 직접적인 영향을 미쳤던 네 개의 태풍 사례를 통해 모델 성능을 검 증한 결과, JMA-MSM 기반 모델이 GFS 기반 모델에 비해 서해, 남해, 동해에서 각각 평균 RMSE를 0.34cm, 0.73cm, 1.86cm, MAPE를 0.15%, 0.36%, 0.68% 개선하였다. 이는 JMA-MSM의 고해상도 자료가 지역적 기상 변화를 정밀하게 반영했기 때문으로 분석된다. 본 연구는 해안 재난 대비를 위한 폭풍해일 예측의 효율성을 높이고, 추가 기상 데이터를 활용한 향후 연구의 기반 제공이 기대된다.
        4,000원
        16.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The increasing demand for real-time professional fitness coaching has led to a need for accurate exercise posture recognition using artificial intelligence. Objectives: To compare the performance of Feedforward Neural Network (FNN) and Stacked Long Short-Term Memory (LSTM) models in classifying fitness posture images using detailed joint coordinate labeling. Design: Comparative analysis of machine learning models using a labeled dataset of fitness posture images. Methods: A dataset from AI-hub containing images and data of 41 exercises was used. Five exercises were selected and processed using a custom program. Data was converted from JSON to CSV format, augmented with joint condition information, and analyzed using Google Colab. Results: The best FNN model achieved a training error of 1.21% and test error of 9.08%. The Stacked LSTM model demonstrated superior performance with a training error of 1.05% and test error of 6.09%. Conclusion: Both FNN and Stacked LSTM models effectively classified sequential fitness images, with Stacked LSTM showing superior performance. This indicates the potential of Stacked LSTM models for accurate fitness posture classification in real-time coaching scenarios.
        4,500원
        17.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The evaluation of Human Movements based on Taekwondo poomsae (movement patterns) is inherently subjective, leading to concerns about bias and inconsistency in scoring. This emphasizes the need for objective and reliable scoring systems leveraging artificial intelligence technologies. Objectives: This study seeks to enhance the accuracy and fairness of Taekwondo poomsae scoring through the application of camera-based pose estimation and advanced neural network models. Design: A comparative analysis was conducted to evaluate the performance of machine learning models on a large-scale Taekwondo poomsae dataset. Methods: The analysis utilized a dataset comprising 902,306 labeled frames from 48 participants performing 62 distinct poomsae movements. Five models—LSTM, GRU, Simple RNN, Random Forest, and XGBoost—were evaluated using performance metrics, including accuracy, precision, recall, F1- score, and log loss. Results: The LSTM model outperformed all others, achieving an accuracy, precision, recall, and F1-score of 0.81, alongside the lowest log loss value of 0.55. The GRU model demonstrated comparable performance, while traditional models such as Random Forest and XGBoost were less effective in capturing the temporal and spatial patterns of poomsae movements. Conclusion: The LSTM model exhibited superior capability in modeling the temporal and spatial complexities inherent in Taekwondo poomsae, establishing a robust foundation for the development of objective, scalable, and reliable poomsae evaluation systems.
        4,000원
        18.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bearing-shaft systems are essential components in various automated manufacturing processes, primarily designed for the efficient rotation of a main shaft by a motor. Accurate fault detection is critical for operating manufacturing processes, yet challenges remain in sensor selection and optimization regarding types, locations, and positioning. Sound signals present a viable solution for fault detection, as microphones can capture mechanical sounds from remote locations and have been traditionally employed for monitoring machine health. However, recordings in real industrial environments always contain non-negligible ambient noise, which hampers effective fault detection. Utilizing a high-performance microphone for noise cancellation can be cost-prohibitive and impractical in actual manufacturing sites, therefore to address these challenges, we proposed a convolution neural network-based methodology for fault detection that analyzes the mechanical sounds generated from the bearing-shaft system in the form of Log-mel spectrograms. To mitigate the impact of environmental noise in recordings made with commercial microphones, we also developed a denoising autoencoder that operates without requiring any expert knowledge of the system. The proposed DAE-CNN model demonstrates high performance in fault detection regardless of whether environmental noise is included(98.1%) or not(100%). It indicates that the proposed methodology effectively preserves significant signal features while overcoming the negative influence of ambient noise present in the collected datasets in both fault detection and fault type classification.
        4,500원
        19.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 K-공간 기반 노이즈 제거 딥러닝(DL)을 이용한 확산강조영상(DWI)의 유용성을 평가하고자 하였다. 연구 를 위해 간세포암으로 확진된 환자 30명을 대상으로 DL 기법 적용 전후의 DWI에 각각 확산경사자계(b-value) 50 과 800을 적용하여 영상화하였다. 획득한 영상에서 간세포암 조직과 정상 간 조직에 관심 영역을 설정하여 b50, b800에서의 신호대잡음비(SNR)와 대조대잡음비(CNR)를 측정하였고 두 명의 관찰자가 각 영상에서 간세포암 조직 을 측정하여 겉보기확산계수(ADC) 값을 계산하였다. 모든 측정값의 평가는 T-검정(T-test)을 사용하여 상관관계 를 평가하였으며 급내상관계수(ICC)를 이용하여 두 관찰자 간 ADC 측정값의 일치도와 신뢰도를 평가하였다. 연구 결과, DL 적용 후 영상에서 SNR과 CNR이 모두 높아졌으며 통계적으로 유의한 것으로(p<0.05) 나타났다. 또한, 간세포암의 ADC 값은 통계적으로 유의하지 않은 것으로(p<0.05) 나타났지만 두 관찰자 간 ADC 측정값의 일치에 대한 신뢰도는 상관계수가 0.75 이상으로 우수하였고, 간세포암의 고유한 성질로 인해 ADC 값의 변화가 적은 점을 고려한다면 충분히 유의한 결과라고 볼 수 있다. 결론적으로 DL DWI은 영상 획득 시간을 단축하면서도 기존 DWI 보다 질적으로 더 나은 영상을 획득했다. 향후 다양한 MRI 검사에 DL이 적용된다면 더욱 유용하게 사용될 것으로 사료 된다.
        4,000원
        20.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 뇌 DWI에서 딥러닝 적용 시 48채널과 8채널 헤드 코일 간 영상 품질의 차이를 분석하는 것을 목표로 하였다. 3.0T MRI를 사용하여 두 종류의 코일을 비교하였으며, 딥러닝 알고리즘의 효과를 확인하기 위해 SNR(신호 대 잡음비), ADC(겉보기 확산 계수), SSIM(구조적 유사성 지수)을 측정하였습니다. 연구 결과에 따르면, 딥러닝 적용 후 b-value에 따른 두 코일 간의 차이가 나타났다. 특히 b-value 0 및 1000에서는 딥러닝 적용 전후에 두 코일 간 통계적으로 유의미한 차이가 없었지만, b-value 3000에서는 적용 전후 모두에서 유의미한 차이가 있었다. SSIM 분석에서도 딥러닝 적용 전후 차이는 없었으나, b-value에 따른 차이가 측정되었습니다. 이러한 차이는 영상 판독에 영향을 미칠 수 있으며, 이를 개선하기 위해서는 딥러닝 알고리즘이 부위별, 코일별, 펄스 시퀀스별로 최적화 될 필요가 있다. 따라서 본 연구는 향후 딥러닝 기반 MRI 영상의 정확도와 일관성을 높이기 위한 기초 정보를 제공 하며, 임상적 적용에서 부위별, 수신 코일별, 펄스 시퀀스별로 세분된 딥러닝의 최적화가 필요하다.
        4,000원
        1 2 3 4 5