검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        반 건조 소화 하수슬러지와 폐플라스틱을 혼합하여 파일롯 규모(85.3kg/hr)의 연속식 저온 (510℃~530℃) 열분해 실험을 하였다. 실험결과 열분해가스 발생량은 투입물 건량의 최대 68.3%, 발열 량은 40.9 MJ/Nm3 이었으며, 연속식 열분해에 따른 외기 유입율이 19.6%이었다. 오일은 투입물 건량 의 4.2%가 발생하였고, 저위발열량은 32.5 MJ/kg 이었으며 시설부식 등을 일으킬 수 있는 황과 염소의 함량이 각각 0.2% 이상이었다. 투입물 건량의 27.5%가 발생한 탄화물의 저위 발열량은 10.2 MJ/kg 이 었고, 용출시험 결과 지정폐기물에 해당하지 않았다. 열분해가스의 연소 배가스는 일산화탄소, 황산화물, 시안화수소 등의 배출농도가 특히 높았고, 다이옥신 (PCDDs/DFs)은 0.034 ng-TEQ/Sm3 로서 법적 기 준치 이내였다. 건조 배가스 응축으로 발생한 폐수는 수질오염물질 47개 항목 중 총질소, n-H 추출물질, 시안 등의 고농도 항목이 많아 전처리 후 하수처리장 등에서의 병합처리 방식을 고려할 필요가 있었다.
        4,200원
        2.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to produce the auxiliary fuel additives that will improve the heat value and reduce the odor of dried sewage sludge, an auxiliary fuel for power plants using process by-products. Through an odor analysis prior to the production of auxiliary fuel additives, it was confirmed that the main odor materials are Methylmercaptan, Acetaldehyde and Trimethylamine. Based on this, we measured the heating value on various processes by-products such as by-products of thermal power generation and by-products of refinery. In addition, the adsorption performance in the major odor material was evaluated. However, for Trimethylamine, it is very difficult to secure the reproducibility of the concentration of the standard materials as the standard material is liquid. Therefore, it was used Ammonia, which has basic property, to replace Trimethyamine. In the evaluation of various process by-products, the highest heating value in heavy oil fly ash was 5,575 kcal/kg, while in the adsorption performance evaluation, FCC was shown as having the best performance in adsorption, as it could adsorb 100% of Methylmercaptan, 47% of Acetaldehyde and 76% of Ammonia. We conducted an adsorption experiment after supporting a transition metal on the FCC in order to improve the adsorption capacity. As a result, it was confirmed the best efficiency when supporting the copper nitrate 0.5% on the FCC. Based on this result, the experiment was conducted to determine the optimal mixing ratio with a high heating value and odor reducing function using Heavy oil fly ash and FCC. The optimal mixing ratio was 90% of Heavy oil fly ash and 10% of FCC. Furthermore, it was found that the most economical performance and highest odor reducing efficiency was achieved when the mixing ratio was 90% of dried sewage sludge and 10% of auxiliary fuel additives.
        4,200원
        3.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        We investigated the effects of leaching concentration (0.1 ~ 1.0 M) and time (1 ~ 120 min) on the phosphorus recovery from ash and dried sewage sludge produced by titanium tetrachloride (TiCl4) flocculation by acidic (H2SO4 and HCl) or alkaline (KOH and NaOH) leaching. The extraction efficiencies of dried sludge were 2.7 ~ 12.6% for H2SO4, 2.5 ~ 10.5% for HCl, 3.6 ~ 9.6% for KOH, and 7.1 ~ 9.9% for NaOH with 1 M, and the maximum efficiency was obtained within 45 min. The maximum %P extracted of sludge ash was 83.1 for H2SO4, 80.2 for HCl, 51.2 for KOH, and 51.2 for NaOH with 1 M, obtained within 45 min. The rate constants (min−1) for the leaching of P from sludge ash were found to be 1.199 for H2SO4, 1.026 for HCl, 0.264 for KOH, and 0.622 for NaOH. The P leaching increased with the increase in leaching concentration, and the maximum leaching for ash was obtained within 0.3 M, regardless of acidic or alkaline leaching. The overall results indicate that the ash of TiCl4 flocculated sewage sludge can be treated with H2SO4 to efficiently recover P.
        4.
        2017.05 서비스 종료(열람 제한)
        하수슬러지의 발생량은 꾸준히 증가하고 있으며, 하수슬러지의 해양투기 금지로 인해 대체 처리 방안들이 요구되고 있다. 다양한 하수 슬러지 처리 방안들 중, 하수 슬러지를 이용한 활성탄의 제조는 슬러지를 폐기가 아닌 재이용하는 방안으로 제기되고 있다. 활성탄은 탄소 성분을 이용하여 제조되므로, 하수 슬러지를 이용하여 활성탄을 제조하는 것도 가능하다. 기존의 대기오염제어설비에서 쉽게 제거되지 않는 원소 수은은 활성탄 흡착을 통해 제거될 수 있다. 본 연구에서는 국내 하수처리장에서 발생한 건조슬러지를 이용하여 다양한 물리적 특성을 지닌 활성탄을 제조하였고, 수은 흡착 능력을 평가하였다. 그리고 다른 원료에서 제조된 활성탄과 수은 흡착 결과를 서로 비교하였다.
        5.
        2016.11 서비스 종료(열람 제한)
        하수슬러지의 발생량은 산업발달 및 인구증가로 꾸준히 증가하고 있으나, 하수슬러지의 해양투기 금지로 대체 할 수 있는 새로운 처리 방법이 요구되고 있다. 특히, 최근에는 건조슬러지를 재이용하는 다양한 방안들이 제기되고 있으며, 그 중 활성탄을 제조하여 이용하는 방법이 있다. 활성탄은 일반적으로 석탄이나 목재와 같은 탄소질 물질을 이용하여 제조된다. 또한 활성탄의 제조는 탄화와 활성화 공정으로 이루어지며, 탄화와 활성화 공정의 인자들의 변화를 통해 활성탄의 특성이 달라진다. 따라서 본 연구에서는 국내 건조 하수처리장에서 발생한 건조슬러지를 이용하여 활성탄을 제조하였다. 탄화시간, 탄화온도, 활성화시간, 활성화온도, 수증기 주입량과 같은 여러 인자들의 변화에 따른 활성탄의 비표면적, 기공분포도의 분석을 통해 활성탄의 최적조건을 도출하여 활성탄을 제조하고자 하였다.
        6.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Fossil fuel combustion generates large amount of green house gas and it was considered major emission source causingglobal warming. For reducing green house gas, renewable energy resources have been emerged as an alternative energy.Among those resources, waste has been considered major resource as one of renewable energy, but it has been not utilizedsufficiently. In Korea, there are lots of efforts to utilize sewage sludge as one of renewable energy resources due to wasteto energy project of government. In this paper, sewage sludge was utilized as main fuel in order to recover heat energysource using oxy-fuel combustion in 30KWth circulating fluidized bed (CFB) pilot plant. Firstly, basic characteristics ofsewage sludge were analyzed and fuel feed rate was calculated by stoichiometry oxygen demand. For producing 30kwthermal energy in pilot plant, the feeding rate of sewage sludge was calculated as 13kg/hr. In oxy-fuel combustion, oxygeninjection rate was ranged from 21% to 40%. Fluidized material was more suitably circulated in which the rate of U/Umfwas calculated as 8 at 800oC. Secondly, Temperature and pressure gradients in circulation fluidized bed were comparedin case of oxy and air combustion. Temperature gradients was more uniformly depicted in case of 25% oxygen injectionwhen the value of excess oxygen was injected as 1.37. Combustion efficiency was greatest at the condition of 25% oxygeninjection rate. Also, the flue gas temperature was the highest at the condition of 25% oxygen injection rate. Lastly,combustion efficiency was presented in case of oxy and air combustion. Combustion efficiency was increased to 99.39%in case of 25% oxygen injection rate. In flue-gas composition from oxy-fuel combustion, nitrogen oxide was ranged from47ppm to 73ppm, and sulfur dioxide was ranged from 460ppm to 645ppm.