검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, durability verification of forged wheels for automobiles were performed using the finite element method for bending fatigue analysis and impact analysis. In addition, the durability analysis environment of forged wheels was implemented. By analyzing the stress distribution on the surface of the forged wheel, the area with a high possibility of breakage was identified and improved. The durability analysis of the initial model forged wheel was performed by bending fatigue analysis and impact analysis, The stress distribution of the forged wheel surface was analyzed through the analysis results of the initial model. and the spokes, flanges, hubs, and rear parts are less likely to be damaged were cut to reduce the weight by about 10%, and the reliability of the improved model was confirmed.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 CH4/CO2 혼합가스에서 CO2 분리를 위해 세라믹 중공사 접촉막 모듈(HFMC)을 이용하여 실험을 수행하였다. 고 내구성의 HFMC를 제작하기 위해, 고강도의 중공사막을 제조하여 평가하였다. 제조한 중공사막을 이용하여 HFMC를 제작하였고, 실험은 CH4/CO2 혼합 기체(30% CO2, CH4 balance)와 monoethanolamine (MEA)를 사용하였다. HFMC 운전 중 기체와 흡수제의 압력이 CO2 제거 효율에 어떠한 영향을 주는지 평가하였다. CO2 제거 효율은 기체압력이 증가함에 따라 같이 상승하였으며, CO2 흡수 flux 또한 액체유량과 함께 증가하는 추세를 보였다. 또한 CO2 흡수율이 40% 이하일 때 는 흡수제가 아래쪽에서 들어가는 향류형태인 LTS-1이 흡수제가 위쪽에서 들어가는 향류형태인 LTS-2보다 CO2 제거 성능 이 높았으며, 흡수율이 40% 이상일 때는 LTS-2가 LTS-1보다 성능이 높았다.
        4,000원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the properties of high-performance concrete and compare them with the properties of ternary blended cement (OPC 60% : BFS 30% : FA 10%) as applied to all-in-one bridge decks. High-performance concrete modified with styrene-butadiene latex (SB latex) was evaluated for strength development and durability through its compressive strength and chloride ion diffusion coefficient. METHODS: The compressive strength test was conducted according to KS F 2405, and the average value of the three specimens was used as the result at each stage. The chloride ion diffusion test was performed at 28 days, 56 days, and 365 days according to NT BUILLD 492. The chloride ion penetration test was conducted according to ASTM C 1202. RESULTS: For the compressive strength of the high-performance concrete, the blast furnace slag 40% replacement (BFS40) mixture had the most similar results to those of the ternary blended cement. The BFS40 mixture exhibited a lower compressive strength at 3 days than the latex modified concrete (LMC) mixture used for the bridge deck pavement, whereas it exhibited a 3.7-9.8% higher compressive strength at 7 days. In addition, the BFS40 mixture had the lowest diffusion coefficient, which was 49.1~59.0% lower than that of the LMC mixture. Mixing with latex tended to decrease in charge passed compared to Plain which is only used ternary blended cement, and showed excellent watertighness (rated “very low”), which is lower than 1,000 coulombs in all mixtures with latex. CONCLUSIONS : The BFS40 mixture exhibited excellent compressive strength, chloride ion permeability resistance, and the lowest chloride ion diffusion coefficient although it included a small amount of latex, which makes it more expensive than the current LMC mixture. It is believed that it is possible to secure excellent economic efficiency and durability by using lesser latex than that in the LMC mixture and using a mixture of the blast furnace slag instead.
        4,000원
        13.
        2018.11 구독 인증기관·개인회원 무료
        Chlor-alkali (CA) membranes as key materials to generate chlorine gas and sodium hydroxide are composed of sulfonic acid layer (S-layer) and carboxylic acid layer (C-layer) to provide fast sodium ion transport and slow hydroxide ion diffusion, respectively. Aciplex F, a representative CA membrane is made in a double layer form via thermal adhesion of both layers after each single layer film is independently fabricated. Unfortunately, the membrane fabrication induces delamination particularly in their interface as a result of hydroxide ion diffusion occurring during CA operation, leading to rapid increase in electrochemical overpotential. In this study, selective chemical conversion technique was developed to solve the delamination issue. Their effectiveness was proved by applying the same concept to a wide range of PFSA membrane.
        14.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS: In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at 60℃ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.
        4,000원
        15.
        2018.05 구독 인증기관·개인회원 무료
        Most of the expressway concrete pavements in Korea have been constructed with jointed plain concrete pavements. However, the premature failure of joints occurred on some routes and it is considered to be related to the durability of concrete. Korea Expressway Corporation has been continuously devoting efforts to increase the durability of concrete, and recent research has shown that premature failure of jointed plain concrete pavement constructed recently has decreased. The durability of pavement concrete is determined by internal and external factors. Currently, the durability of pavements concrete is controlled by controlling the quantity and the spacing factor of internal air. In this study, the feasibility of evaluating concrete durability through absorption performance tests was examined. The absorption performance was evaluated by applying ASTM C 1585 and modified NBN B 15-215 in Belgium and applied to the pavement concrete mixed in the laboratory or collected on site. Each test is a method to evaluate water absorption performance, but ASTM evaluates the absorption performance through the upper surface and NBN evaluates the absorption performance through the entire surface of specimens. In this study, the absorption performance of the pavement concrete measured according to the test method was compared and the advantages and disadvantages of the performance evaluation method were examined through comparison of test results and procedures. As a result of the absorption performance test on the cores collected at the site, the amount of water absorption in the region where the few premature failure was occurred was relatively small. Also, the specimen of lower water cement ratio absorbed the smaller amount of water. And the small amount of aggregate at the surface showed tendency of the large absorption of the water. The amount of absorption due to the increment of air content showed a moderate increment but it was relatively small. This study has confirmed the possibility of estimating the durability through the evaluation of the absorption performance of concrete. However, further study is needed to extend the results obtained from the test method to the evaluation criteria of pavement concrete.
        18.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        안정처리된 도로 지반재료는 현장에서 환경적인 요인으로 인하여 내구성능은 여전히 구조적인 성능과 더불어 평가가 요구되고 있다. 이에 본 논문에서는 국내에서 대표적으로 활용하고 있는 기층과 노상재료를 활용하여 다양한 안정제 종류와 함유량을 달리하여 공시체를 제작하였고 동결-융해 및 습윤-건조하여 여러 조건의 반복재하 회복탄성계수시험을 실시하여 내구성능 및 특성을 파악하였다. 또한 결과에 기초하여 안정처리된 지반재료에 대한 회복탄성계수 예측모델을 살펴보고 모델계수의 범위를 평가후 문헌의 자료와 비교하였다.
        4,000원
        19.
        2007.09 구독 인증기관 무료, 개인회원 유료
        Carbonation in concrete structures has been handled as the most fundamental and critical factor related to the durability of reinforced concrete. As a result, there have been efforts to develop repair materials to control carbonation As one of these efforts, alkali recovery agents have been presented as materials for increasing the re-alkalization and durability of carbonated concrete structures. However, in applying them in the field, the performance and quality of concrete recovered after an alkali recovery agent is applied has not been fully assessed. Therefore, to examine the recovered performance of concrete structures resulting from the application of an alkali recovery agent, the present study assessed the depth of carbonation and the degree of deterioration of 20 years or older reinforced concrete structures, and analyzed the quality of concrete after applying an alkali recovery agent to the structures. This study aimed at providing basic information for the application of alkali recovery agents in the field. In this experiment, alkali recovery agents of the lithium silicate line, which are most common in Korea, were applied and cured using concrete of the same size. The degree of recovery was investigated according to the length of time in the initial curing stage, and based on the investigation, the maintenance performance of the alkali recovery agent was assessed according to the age of exposure to the open air. For these tasks, this experiment sampled concrete of different degrees of deterioration, applied alkali recovery agents to them, and observed re-alkalization and changes in the internal texture of the concrete.
        4,000원
        20.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국내에서는 교면포장의 파손에 따른 교량 바닥판의 열화 및 운전자 안정성의 문제가 대두되고 있다. 기존 아스팔트 재료는 교량에서 발생하는 열악한 환경에 적용하기에는 한계가 있어 교량 바닥판을 보호하고 상대적으로 큰 처짐에 대하여 장기간 견딜 수 있는, 피로저항성이 우수한 고내구성 교면포장 아스팔트 혼합물의 개발이 필요하게 되었다. 이에 SBS 첨가물과 첨가제를 사용하여 생산성 및 작업성이 우수하고 피로균열저항성이 뛰어난 교면포장용 아스팔트 바인더를 개발하였다. 새로운 아스팔트 바인더는 회전점도시험 (RV test), 인화점시험 (Flash point test), 동적전단시험(DSR test), 저온빔시험(BBR test) 등을 통하여 PG 70-34의 공용등급으로 확인되었다. 본 연구에서 개발된 아스팔트 바인더를 사용한 혼합물의 공용성을 평가하기 위하여, 피로시험, 휠트래킹시험, 수분손상시험 등을 실시하였으며 실물크기의 윤하중시험을 통하여 소성변형 저항성 및 피로균열 저항성에 대하여 평가하였다. 실내공용성 시험을 통하여 교면포장용 아스팔트 혼합물이 SBS 개질 혼합물에 비하여 3배 이상의 피로수명을 가졌다. 또한, 윤하중시험에서도 소성흐름이 발생하지 않았고, 피로균열은 250,000회 이상을 재하하여도 PG 64-22 혼합물의 38% 밖에 나타나지 않았다.
        4,300원
        1 2