This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using Liquid Scintillation Counter and Ion Chromatograph respectively. In addition, the activities of uranium and thorium nuclides were analyzed by Inductively Coupled Plasma Mass Spectroscopy. Groundwater samples were collected from 9 sites of water intake facilities for wide area supply in Jeju island from September 2022 to September 2023. The 40K concentrations of groundwater ranged between 0.050 and 0.400 Bq·L-1. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium and thorium in groundwater varied from 0 to 500 ng L-1 and 0 to 2.4 ng L-1, respectively. The concentrations of uranium did not exceed 30 μg L-1, thresholds indicated by the US EPA. By analyzing the concentrations of 40K, 222Rn, 238U and 232Th, the annual effective dose of residents can be assessed. The evaluated residents’ effective dose from natural radionuclides due to intake of drinking water is less than the recommended value of 100 μSv y-1. Consequently, this study indicates that the cancer risks of the residents in Jeju island from naturally occurring radioactive materials ingested with water is insignificant.
The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.
Korea Institute of Radiological and Medical Sciences provides proton irradiation service of up to 40 MeV using cyclotron. The use of such a cyclotron was approved in advance to satisfy the Nuclear Safety Act, and radiation safety was evaluated in this process. The Monte Carlo method is generally used to evaluate the shielding safety of high-energy accelerators, and MCNP 6.2 was used in the previous evaluation. In this study, in order to verify the results of previous evaluation, the calculation results of MCNP 6.2 and Particle and Heavy Ion Transport code System (PHITS) 3.24 are compared. PHITS is a general-purpose Monte Carlo particle transport simulation code that is used in many studies in the fields of accelerator technology, radiotherapy, space radiation, etc. In the previous evaluation, the effective dose by neutrons and photons generated by the collision of 40 MeV 20 μA of protons with a 10.5 mm thick beryllium target was evaluated, and in this study, this was reproduced with PHITS. As the radiation exposure evaluation for the user or pubic is evaluated based on the radiation dose and energy distribution generated around the target, the effective dose and energy distribution received by the water phantom with a radius of 1 cm on the front, side, and back of the target were calculated. T-Track, a tally of PHITS, was used to calculate effective dose, which is similar to F4 tally of MCNP 6.2 using a dose conversion factor. For the dose conversion factor, the value suggested as AP irradiation in Publication 103 was used. As a result of the calculation, the effective dose by neutrons at the front, side and back of the target was 1.42×105, 2.09×104, and 1.39×104 mSv·h−1, respectively, which was similar to 2.00×105, 1.84×104, and 2.59×104 calculated using F4 tally in MCNP. Moreover, the results of calculating the effective dose by photons using PHITS were 4.81×10, 3.10×10, and 2.66×10, respectively, and the results of calculating MCNP were 4.49×102, 6.45×10, and 9.64×10. The average energies of neutrons were 11.2, 0.69, and 0.31 MeV when calculated by PHITS, respectively, and 13.8, 7.8, and 4.6 when calculated by MCNP. Moreover, the average energies of photons were 1.98, 0.98, and 0.86 when calculated by PHITS, respectively, and 3.9, 3.2, and 2.6 when calculated by MCNP.
대규모 데이터에 기반한 실제 사용 조건의 장기유효선량 분석 연구는 부족하다. 본 연구에서는 국내 324개 의료기관에서 사용하는 흉부 X건 검사의 노출조건에 대해 전산모사를 이용한 장기선량을 계산하고 평가하였다. 실험결과, 저에너지 파라미터 대역에서 유효선량은 0.024 mSv이고 비장, 부신, 폐 순으로 높았다. 고에너지 노출파라미터 대역에서 유효선량은 0.123 mSv이고 신장, 비장, 부신 순으로 높게 나왔다. Park의 연구에서 제안한 화질과 피폭을 고려한 최적의 조건을 사용했을 때 유효선량은 0.017 mSv 로 나타났다. 사용 에너지가 높아질수록 장기 전체의 유효선량이 높아지고 그 중 신장이 가장 크게 증가하였다. 연구결과는 흉부X선 검사 시 참고자료가 되고 환자 피폭저감에 도움을 줄 것이다.
본 연구는 경기도 소재 대학병원에 2018년 1월1일부터 2018년 6월30일까지 복부 CT검사를 위해 내원한 모든 환자의 영상 중 무작위로 선정하여 복부 면적의 크기 별로 20명 씩 60명을 총 3군으로 분류하여 복부 CT영상의 면적에 따른 유효선량과 화질의 변화정도를 알아보았다. 그 결과 평균면적 군 에서 유효선량이 7.34 mSv로, 평균면적이상 군은 8.39 mSv, 평균면적이하 군은 5.89 mSv로 측정 되었다. 화질분석을 위해 복부면적에 따라 동일한 3영역에 ROI를 그려 비교해본 결과 3군으로 분류한 복부면적에서 모두 CT value가 유의한 차이가 있는 것으로 분석되었다(p<0.05). 향후 실제 임상에서 적용할 수 있는 프로토콜을 개발 시 본 연구결과를 기초자료로 활용할 수 있을 것으로 사료되며 현재 임상에서 CT검사 시 적용하고 있는 다양한 선량감소 프로그램을 적용 및 복부 면적 외 다양한 환자의 변환 조건 등을 고려하여 연구와 고찰을 도출한다면 화질과 피폭선량 감소에 도움을 줄 수 있을 것으로 사료된다.
본 연구에서는 국가에서 권고하고 있는 일발촬영 진단참고준위 설정에 사용된 조건을 조사하여 PCXMC v2.0 프로그램을 이용하여 유효선량을 측정하고 생물학적 평가를 해보고자 한다.
그 결과 ICRP 60에서 유효선량은 가장 높은 Pelvis AP는 0.794 mSv 가장 낮은 Chest PA는 0.050 mSv이었다. ICRP 103에서는 남성이 가장 높은 T-Spine AP는 0.733 mSv 가장 낮은 Chest PA는 0.057 mSv, 여성은 가장 높은 T-Spine AP는 0.906 mSv 가장 낮은 Chest PA는 0.052 mSv이었다. 남녀 성인 40세 기준으로 일반 촬영별 유효선량을 평가 해 보았고, 선량한도의 제한을 받지 않는 의료피폭이라도 방사선위해의 확률적 영향을 최소화하기 위해서 선량을 권고량 이하로 유지하여 국민의 의료피폭을 줄이기 위해 노력이 필요할 것으로 사료된다.
라돈은 자연방사성원소로 호흡을 통해 인체에 피폭된다. 본 연구에서는 2017년 6월 1일부터 2017년 8월 28일까지 3개월 동안 A대학의 8개 건축물에 대해 실내 라돈농도를 측정하여 비교하였고, 연간 유효선량을 도출하였다. 본 연구에서 A대학의 건축물 Hall G 와 Hall F의 라돈농도는 각각 81 Bq/㎥, 14 Bq/㎥ 로 나타났으며, 전체 조사 건축물의 평균 실내 라돈농도는 41.63 Bq/㎥로 나타났다. 대학 내 학습공간과 생활공간에 대한 연간 유효선량 환산치의 평균은 0.40 mSv/y이며 최대 연간 유효선량은 0.78 mSv/y, 최소 연간 유효선량은 0.13 mSv/y로 나타났다. 학교는 학생들이 오랜 시간 머무르는 공간이므로 건축물에 대한 적절한 환기와 관리를 통해 실내라돈 농도를 낮추는 것이 라돈에 대한 자연방사선 피폭을 낮추는 방법이다.
방사선 방호의 목적 중 하나는 확률적 영향을 최소화 하는 것이다. PCXMC 2.0은 몬테카를로 시뮬레이션 기반의 프로그램으로 입사표면선량을 통해 유효선량과 암의 발병확률을 예측가능하게 해준다. 그렇기 때문에 선량계에 따른 입사표면선량 측정이 특히 중요하다. 본 연구는 반도체 선량계, 일반 선량계, 유리선량계를 통해 입사표면선량을 측정하고 그에 따른 결정 장기의 유효선량과 발병 확률을 비교분석 하는 것에 목적을 두었다. 실험방법은 두개부, 흉부, 복부의 선량계 별 입사표면선량을 측정하고 PCXMC 2.0을 통해 부위 별 결정 장기의 유효선량과 암의 발병 확률을 평가하였다. 그 결과 부위 별 입사표면선량은 동일한 조건임에도 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 이를 토대로 유효선량과 결정 장기의 암 발병 확률을 분석한 결과 또한 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 결론적으로 동일한 조건임에도 사용한 선량계에 따라 유효선량과 발병 위험도는 다르게 나타났음을 알 수 있었고, 본 연구를 통해 각각의 선량계에 따른 정확한 입사표면선량 모델을 제시하는 것이 중요하다는 것을 알 수 있었다.
고용량 131I 치료는 분화갑상선암으로 인한 갑상선전절제술을 받은 환자에게 보편적으로 시행되어 왔다. 고용량 131I 치료를 하는 경우 환자로부터 일반인이 받게 되는 피폭선량을 선량한도 이내로 제한하기 위해 환자를 일정 기간 동안 격리하여야 한다. 유효반감기는 환자로부터 가족들이 얼마나 피폭되는지 계산하거 나 격리기간을 결정하는데 중요한 값이다. 이에 본 연구에서는 NM670 SPECT/CT를 이용해 고용량 131I 치 료환자의 유효붕괴상수, 유효반감기, 격리기간을 도출하였다. 본 연구를 통해 고용량 131I 치료환자의 유효반감기를 도출하였고, 체내에 잔류 방사능량이 퇴원기준인 1. 2 GBq 에 도달하는 시간을 확인하였다. 또한 치료선량별 유효반감기를 비교하였을 때 유의한 차이가 없 었으나, 격리기간은 치료선량이 커질수록 격리기간이 길어지는 것을 확인할 수 있었다. 전처치 유형별 유 효반감기를 비교하였을 때 rhTSH 환자군과 THW 환자군의 유효반감기가 유의한 차이를 보이지 않았으나, 격리기간은 rhTSH 환자군이 THW 환자군 보다 짧게 나타났다. 이는 치료선량의 차이로 인해 격리기간이 짧아진 것으로 판단된다. 따라서 현행 의료보험체계(rhTSH 사용 시 3.7 GBq 이하에서 보험적용)가 유지된다면, 전처치 유형별로 구분하여 현행 격리기간(2박 3일)보다 더 이른 시간에 환자를 퇴원시킬 수 있을 것이다.
This research, sponsored by the Korean Ministry of Environment in 2014, was the first epidemiological study in Korea that investigated the health impact assessment of radon exposure. Its purpose was to construct a model that calculated the annual mean cumulative radon exposure concentrations, so that reliable conclusions could be drawn from environment-control group research. Radon causes chronic lung cancer. Therefore, the long-term measurement of radon exposure concentration, over one year, is needed in order to develop a health impact assessment for radon. Hence, based on the seasonal correction model suggested by Pinel et al.(1995), a predictive model of annual mean radon concentration was developed using the year-long seasonal measurement data from the National Institute of Environmental Research, the Korea Institute of Nuclear Safety, the Hanyang University Outdoor Radon Concentration Observatory, and the results from a 3-month (one season) survey, which is the official test method for radon measurement designated by the Korean Ministry of Environment. In addition, a model for evaluating the effective annual dose for radon was developed, using dosimetric methods. The model took into account the predictive model for annual mean radon concentrations and the activity characteristics of the residents
평판 검출기(flat-panel detector)는 필름-스크린 시스템과 비교하여 넓은 범위의 노출지수(dynamic range)를 갖게 된다. 평판 검출기를 대상으로 임상에서 일반적으로 사용하고 있는 Abdomen supine 노출 조건인 81kV에 20mAs를 기준으로 전신형 팬텀 whole body human phantom PBU-50 (Kyoto, kagaku, Japan)을 모의 환자로 화질평가와피폭선량측면에서 비교 연구하였다. PSNR값이 30dB이상으로 판독 가능한 영상의 kV변화에 따른 DAP값은 약 19.6배차이를 나타냈다. 또한 kV변화에 따른 유효선량을 ICRP 103을 기준으로 비교한 결과 방사선에 의한 확률적 영향이 증가함을 알 수 있었다. 방사선검사자의 지속적인 교육 및 지도를 통한 우리나라에 맞는 디지털 방사선 Technical chart를 마련하여 양질의 영상과 환자피폭선량에 대한 기준 선량을 마련해야 할 것이다.