검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 118

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dyeing process is a very important unit operation in the leather and textile industries; it produces significant amounts of waste effluent containing dyes and poses a substantial threat to the environment. Therefore, degradation of the industrial dye-waste liquid is necessary before its release into the environment. The current is focusing on the reduction of pollutant loads in industrial wastewater through remediating azo and thiazine dyes (synthetic solutions of textile dye consortium). The current research work is focused on the degradation of dye consortium through photo-electro-Fenton (PEF) processes via using dimensionally stable anode (Ti) and graphite cathode. The ideal conditions, which included a pH of 3, 0.1 (g/L) of textile dye consortium, 0.03 (g/L) of iron, 0.2 (g/L) of H2O2, and a 0.3 mAcm-2 of current density, were achieved to the removal of dye consortium over 40 min. The highest dye removal rate was discovered to be 96%. The transition of azo linkages into N2 or NH3 was confirmed by Fourier transforms infra-red spectroscopic analysis. PEF process reduced the 92% of chemical oxygen demand (COD) of textile dye consortium solution, and it meets the kinetics study of the pseudo-first-order. The degradation of dye through the PEF process was evaluated by using the cyclic voltammetric method. The toxicity tests showed that with the treated dye solution, seedlings grew well.
        4,800원
        4.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning of nuclear facilities happens, large amounts of radioactive wastes are released. Because costs of nuclear decommissioning are enormous, effective and economical decontamination technologies are needed to remove radioactive wastes. During NPP operation, corrosion product called Chalk River Unidentified Deposits (CRUD) is generated. CRUD is an accumulation of substances and corrosion products consisting of dissolved ions or solid particles such as Ni, Fe, and Co on the surface of the NPP fuel rod coating. CRUD is slowly eroded by the circulation of hot pressurized water and later deposits on the fuel rod cladding or external housing, thereby reducing heat production by the nuclear fuel. Decontamination of radiologically contaminated metals must be performed before disposal, and several methods for decontaminating CRUD are being studied in many countries. Decontamination technology is an alternative to reducing human body covering and reducing radioactive waste disposal costs, and much research and development has been conducted to date. Currently, the importance of decontamination is emerging as the amount of waste stored in radioactive waste storage is close to saturation, and the amount of radioactive waste generated must be minimized through active decontamination. In this study, a preliminary study was conducted on the removal of CRUD by multiple membrane in an electro-kinetic process using an electrochemicalbased decontamination method. Preliminary research to develop a technology to electrochemically remove CRUD by using a self-produced electrochemical cell to check the pH change over time of the CRUD cell according to voltage, electrolyte, membrane and pH change.
        6.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
        5,200원
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, as the demand for a non-contact liquid crystal alignment method capable of improving viewing angle characteristics has spread throughout the industry, various non-contact liquid crystal alignment methods, including conventional UV light alignment, are being actively studied. In the case of UV light alignment, it is currently applied to mass production in many fields and shows relatively excellent initial characteristics, but there is a problem of display quality deterioration over time. In this study, among these non-contact liquid crystal alignment methods, the liquid crystal is oriented by quantitatively irradiating an ion beam onto the SiOF inorganic film, which has excellent initial characteristics and does not cause deterioration in quality over time., the electro-optical properties were evaluated by manufacturing a commercial-level IPS (In-Plane Switching) liquid crystal cell. In particular, in the case of such inorganic film orientation, it is common to have many problems with orientation stability, but the evaluation cell manufactured by the method proposed in this study is capable of maintaining a uniform orientation without losing orientation even after heat treatment at a high temperature of 200°C. could be observed.
        4,000원
        9.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The preparation of graphene oxide and the modification of its surface directly with copper pentacyanonitrosylferrate (III) nanoparticles are presented in this work, as well as the characterization of the materials using Fourier-transform infrared spectra, X-ray diffractometry and scanning electron microscopy techniques. Beyond that, the study on the electrochemical behavior of the dispersed bimetallic complex on the graphene oxide, as known as GOCuNP, surface was carried out by the cyclic voltammetry technique. The graphite paste electrode modified with GOCuNP was successfully applied in the detection of hydrazine, presenting limit of detection of 1.58 × 10–6 mol L−1 at concentration range of 1.00 × 10–5 to 5.00 × 10–3 mol L−1 of hydrazine, being so the proposed bimetallic complex formed can be considered as a potential candidate for the manufacturing of electrochemical sensors for hydrazine detection.
        4,500원
        10.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        AZO thin films are grown on a p-Si(111) substrate by RF magnetron sputtering. The characteristics of various thicknesses and heat treatment conditions are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall effect and room-temperature photoluminescence (PL) measurements. The substrate temperature and the RF power during growth are kept constant at 400 ℃ and 200 W, respectively. AZO films are grown with a preferred orientation along the c-axis. As the thickness and the heat treatment temperature increases, the length of the c-axis decreases as Al3+ ions of relatively small ion radius are substituted for Zn2+ ions. At room temperature, the PL spectrum is separated into an NBE emission peak around 3.2 eV and a violet regions peak around 2.95 eV with increasing thickness, and the PL emission peak of 300 nm is red-shifted with increasing annealing temperature. In the XPS measurement, the peak intensity of Al2p and Oll increases with increasing annealing temperature. The AZO thin film of 100 nm thickness shows values of 6.5 × 1019 cm−3 of carrier concentration, 8.4 cm−2/V·s of mobility and 1.2 × 10−2 Ω·cm electrical resistivity. As the thickness of the thin film increases, the carrier concentration and the mobility increase, resulting in the decrease of resistivity. With the carrier concentration, mobility decreases when the heat treatment temperature increases more than 500 ℃.
        4,000원
        17.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than –0.4 V and to the Freundlich isotherm at electrical potentials higher than –0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of –1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of 22.61 kJ mol–1 during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.
        4,000원
        19.
        2018.11 구독 인증기관·개인회원 무료
        Although there are several methods for establishment of stem cell line, most of them has critical limit such as, ethical problem and infectious concern. Accordingly, we investigated the cell fusion technique as a new tool to establish a stem cell line. We cultured mouse embryonic stem cell (ESC) and somatic cells. Then, these two type cells were fused by electro cell fusion that consist of three steps (AC→DC→AC). The fused cells were individually transferred into a 96-well plate and cultured in ESC culture medium for 6 ~ 7 days. Newly formed colonies were evaluated several analysis methods like morphology, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins, and karyotyping. The fusion efficiency from the ESC and somatic cell into colony formation was about 0.3 ~ 0.5 %. The electro cell fused (EF) new stem cell colonies (EF-SC1 ~ 4) were indicated normally round-shape morphology similarly to ESC colonies and each colonies were expressed green fluorescent protein that having somatic cells. Also, all EF-SC groups were highly expressed AP activity and pluripotency marker proteins, POU5f1, NANOG, SOX-2 and SSEA-1. In the transcription levels, all EF-SC groups were significantly higher level of expression in Pou5f1 and Nanog compared to donor cells (ESC and somatic cell) (p<0.05). In particular, the level of Pou5f1 expression was about 2-folds higher in EF-SC2 and EF-SC3 groups than in control and EF-SC1 groups (p<0.05). Also, the level of Nanog expression was very significantly higher in EF-SC2 group (3.5-folds) compared to control ESC group, and the expression levels among treatment groups were variable (ESC<EF-SC1<EF-SC4<EF-SC3<EF-SC2, p<0.05). In karyotype analysis, the results of EF-SC2 and EF-SC3 were presented the same that of ESC, while that of EF-SC1 and EF-SC4 shown aneuploid mutation in chromosome 8. Taken together, these results demonstrate that electro cell fusion technique can be used as a new method to establish of stem cell lines.
        1 2 3 4 5