검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we employed a small-scale experiment to demonstrate the introduction of a thin copper heat dissipation plate into a bentonite buffer layer of an engineered barrier system. This experiment designed for spent nuclear fuel disposal can effectively reduce the maximum temperature of the bentonite buffer layer, and ultimately, make it possible to reduce the area of the disposal site. For the experiment, a small-scale engineered barrier system with a copper heat dissipation plate was designed and manufactured. the thickness of the cylindrical buffer was about 2 cm, which was about 1/20 of KAERI Repository System (KRS). At a power supply of 250 W, the maximum buffer temperature reduced to a mere 1.8°C when the thin copper plate was introduced. However, the maximum surface temperature reduced to a remarkable 9.1°C, when a U-collar copper plate was introduced, which had a good contact with the other barrier layers. Consequently, we conclude that the introduction of the thin copper plate into the engineered barrier system for spent nuclear fuel disposal can effectively reduce the maximum buffer temperature in high-level radioactive waste disposal repositories.
        4,200원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Copper, mainly used as a material for outer canister, generates various corrosion products under aerobic and anaerobic conditions in the operational and/or post-closure phases of the deep geological repository. These products could affect performance of engineering barrier system (EBS) through interaction with surrounding bentonite that makes up the buffer and backfill materials. Accordingly, in this study, we suggested research items to be conducted to minimize degradation of EBS due to copper corrosion products, based on the phenomenological review results for copper corrosion mechanisms and interaction between resultant product and bentonite in the deep geological disposal environment. During the post-closure phase, condition in the disposal facility changes form aerobic to anaerobic over time, and thereby, causes and products of copper corrosion vary. Under aerobic condition, copper corrosion is mainly induced by oxygen (O2) in the repository, chloride (Cl-) and carbonate (CO3 2-) ions from groundwater flowing into the facility, resulting in corrosion products such as cuprite (Cu2O), tenorite (CuO), atacamite (CuCl2·3Cu(OH)2) and malachite (Cu2CO3(OH)2). And, copper corrosion under anaerobic condition is primarily due to hydrogen sulfide (H2S) and sulfate (SO4 2-) in groundwater flowing into the facility, leading to formation of chalcocite (Cu2S) and covellite (CuS) as corrosion products. Depending on environment of the disposal facility, copper corrosion products are dissolved and ionized to Cu2+ in groundwater, and subsequently adsorbed on the nearby smectite. Then, it causes a cation exchange reaction with exchangeable cations in the interlayer of smectite. As a result of reviewing the previous experiments, it was confirmed that Cu2+-exchanged bentonite has a slightly reduced basal spacing and swelling capacity. From the results as above, there is a possibility that performance of EBS may be degraded due to copper corrosion products. To minimize its effect of degradation in the domestic facility, items to be further studied are as follows: (a) Method for reducing copper corrosion such as selection of appropriate material and structure for the canister, and (b) How to control dissolution of copper canister product into groundwater through predicting type and ionization process. The results of this study could be directly used to developing design concept of EBS for the domestic disposal facility and to establishing roadmap of future R&D programs.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS), composed of spent nuclear fuel, canister, buffer and backfill material, and near-field rock, plays a crucial role in the deep geological repository for high-level radioactive waste. Understanding the interactions between components in a thermo-hydro-mechanical -chemical (THMC) environment is necessary for ensuring the long-term performance of a disposal facility. Alongside the research project at KAERI, a comprehensive experimental facility has been established to elucidate the comprehensive performance of EBS components. The EBS performance demonstration laboratory, which installed in a 1,000 m2, consists of nine experimental modules pertaining to rock mechanics, gas migration, THMC characteristics, buffer-rock interaction, buffer & backfill development, canister corrosion, canister welding, canister performance, and structure monitoring & diagnostics. This facility is still conducting research on the engineering properties and complex interactions of EBS components under coupled THMC condition. It is expected to serve as an important laboratory for the development of the key technologies for assessing the long-term stability of engineered barriers
        4.
        2023.11 구독 인증기관·개인회원 무료
        In order to ensure the long-term safety of a deep geological repository, the performance assessment of the Engineered Barrier System (EBS) considering a thermal process should be performed. The maximum temperature at the side wall of a disposal canister for the technical design requirement should not exceed 100°C. In this study, the thermal modelling was conducted to analyze the effects of the thermal process from a disposal canister to the surrounding near-field host rock using the PFLOTRAN code. The mesh was generated using the LaGriT code and the material properties were assigned by applying the FracMan code. Initial conditions were set as the average geothermal gradient (25.7°C/km) and an average surface temperature (14.7°C) in Korea. The highest temperature was observed at the middle of the canister side wall. The temperature of the buffer was lower than that of the canister, and the temperature increase of the deposition tunnel and the host rock was insignificant due to the lower effect of the heat source. The result of the thermal evolution of the EBS represented the highest thermal effects in the vicinity of the canister. In addition, the thermal effects were largely decreased after 10 years of the entire simulation period. It demonstrated that the model took 3 years to heat up the buffer around the canister. The temperature at the canister side wall increased until 3 years and then decreased after that time. This is because that the radioactive decay heat from the heat source was emitted enough to raise the overall temperature of the EBS by 3 years. However, the decay heat rate of the canister decreased exponentially with the disposal time and then its decay heat was not emitted enough after 3 years. In conclusion, the peak temperature results of the EBS were lower than 70°C to meet the technical design requirement.
        5.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100°C. However, they cannot be applied to temperatures above 100°C. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100°C and 125°C, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.
        4,000원
        6.
        2022.10 구독 인증기관·개인회원 무료
        Compacted bentonite buffer materials are a key component of the engineered barrier system for high-level radioactive waste disposal. The bentonite buffer is saturated via groundwater flow through the excavation damaged zone in the adjacent rock mass. Bentonite saturation results in bentonite swelling, gelation and intrusion into the nearby rock discontinuities. Groundwater flow can cause bentonite erosion and transportation of bentonite colloids. This bentonite mass loss can negatively impact the long-term integrity of the engineered barrier system. Hence, it is necessary to understand the effects of erosion on the properties of the bentonite buffer. In this study, a series of artificial fracture erosion experiments are conducted to investigate the erosion characteristics of compacted Ca-bentonite buffer materials for different initial dry density conditions. Compacted bentonite blocks and bentonite pellets were manufactured using the cold isostatic pressing technique and granulation compactor respectively. The specimens were placed in a custommade transparent artificial fracture cell and the bentonite intrusion characteristics were monitored for two months under free swelling conditions with no groundwater flow. The radial expansion of the bentonite specimens within the artificial fracture was measured using a digital camera. In addition, the swelling pressure, displacement, and saturation were determined using a load cell-piston system, LVDT, and electrical resistivity electrodes respectively. A hydro-mechanical-chemical coupled dynamic bentonite diffusion model was applied to model the bentonite erosion characteristics using COMSOL Multiphysics.
        7.
        2022.10 구독 인증기관·개인회원 무료
        When a rapid groundwater inflow is introduced from the adjacent rock mass in the early stage of disposal, hydraulic pressure build-up occurs, which may cause piping erosion at the buffer material itself and the interface of the gap-filling material. Such piping erosion in compacted bentonite buffer via interaction between the buffer and the adjacent rock mass may deteriorate the performance of the buffer material. Therefore, it is necessary to understand the conditions and scenarios in which the piping phenomenon around the buffer material occurs for the long-term health of the repository. In this study, laboratory-scale experimental tests of piping erosion in buffer and interfacial rock was introduced. ø 100 mm × 200 mm height compacted bentonite specimens were placed in a cylindrical acetal cell, and the distilled water was continuously injected at a flow rate of 0.068 L/min using a dual syringe pump. The inflow of water was generated from the bottom and side cell of buffer material. During water injection, injected water pressure and amount were measured with visual observation. The results showed that the external saturation of buffer firstly occurs followed by piping crack generation along the wetting front. The additional piping channels were generated and merged with others. As the injection stopped, the swelling and self-sealing behavior of buffer material were observed. Moreover, X-ray CT scanning of the cell was conducted after the piping simulation to analyze the piping channels and saturation depth. The results highlight the piping erosion phenomenon mainly occurs due to the presence of a gap outside the buffer material. Further experimental cases is need to comprehensively understand piping phenomena in buffer material for assessing the long-term stability of underground radioactive waste disposal systems.
        8.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위방사성폐기물 처분시스템에서는 방사성 핵종의 붕괴열과 암반으로부터의 지하수 유입으로 열응력 및 팽윤압의 발생으로 열-수리-역학적 복합거동(coupled thermo-hydro-mechanical behavior)이 예상되기 때문에 한국원자력연구원은 처분시스템 및 근계암반에서의 열-수리-역학적인 복합거동 특성을 평가하기 위해서 지하처분연구시설(KAERI Underground Research Tunnel, KURT)에서 2016년부터 현장시험(In-situ Demonstration of Engineered Barrier System, In-DEBS)을 수행 중에 있다. 본 연구에서는 In-DEBS 현장시험 데이터 분석하고 벤토나이트 완충재와 화강암반에서의 열-수리-역학적 복합거동 특성을 평가하기 위해 TOUGH2-MP/FLAC3D을 이용하여 수치해석을 수행하였다. 또한 벤토나이트 블록과 KURT 화강암의 열-수리-역학적 복합거동 특성을 평가하기 위해 사용된 각각의 열, 수리, 그리고 역학적 모델의 적합성을 평가하고 자 현장시험에서 계측된 온도, 상대습도, 그리고 변위의 결과와 수치해석으로 계산된 결과를 비교하였다. 온도와 상대습도의 계산 결과를 현장 데이터와 비교·분석한 결과, 전체적으로 유사한 경향을 보일 뿐만 아니라 시간에 따라 변화하는 정량적인 값 역시 유사하게 나타났다. 역학적 해석 결과를 살펴보면, 계산된 변위의 전반적인 경향은 유사하지만 해석 결과가 계측 값에 비해 상대적으로 작게 나타났다. 축대칭 모델을 이용하여 In-DEBS 현장시험에서 관측된 열-수리-역학적 복합거동 특성을 전반적으로 평가할 수 있었지만, 벤토나이트 블록 및 KURT 암반에서의 열-수리-역학적 복합거동을 면밀히 살펴보기 위해서는 추후 터널의 형상과 주변 KURT 터널의 영향을 반영한 3차원 해석이 필요할 것으로 판단된다. 본 연구에서 사용된 입력 물성과 열-수리-역학적 모델은 추후 In-DEBS 장기 거동 및 처분시스템에서의 열-수리-역학적 복합거동 특성을 평가하고 예측하는데 활용될 수 있을 것으로 기대된다.
        4,600원
        9.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 논문은 고준위폐기물 처분시스템에서 공학적방벽의 열-수리-역학적(Thermal-hydraulic-mechanical) 복합거동 실증을 위 In-DEBS (In-situ Demonstration of Engineered Barrier System) 를 개발하여 구축하는 과정에 대해 설명한다. 공학적방벽은 크게 처분용기, 완충재 그리고 근계암반으로 이루어져 있는데, In-DEBS는 완충재 및 근계암반을 대상으로 지하수 유입 및 처분용기의 발열에 의한 THM 복합거동을 분석할 수 있도록 설계되어 있다. In-DEBS 현장시험은 A-KRS의 1/2.3 규모로 설계되어 있기 때문에 처분공의 지름이 약 860 mm로 작게 굴착하였다. 따라서, 처분공 안에서 센서와 히터를 삽입하면서 완충재 블록을 조립하는 것은 힘들기 때문에 완충재 블록 일체형 설치 틀(OBPA)를 개발하여 외부에서 모두 조립하였다. 완충재블록, 센서 및 히터가 조립 완료된 일체형 설치 틀은 총 무게가 약 3톤으로 매우 무겁기 때문에, 처분공에 정확히 삽입하기 위해서는 특별한 운송기구가 필요하다. 본 연구에서는 레일을 이용하여 5톤 이상의 무게를 들어서 정확한 위치에 정치 시킬 수 있는 In-DEBS 전용 크레인을 개발하여 조립완료된 완충재 블록을 삽입하였다. 근계암반의 THM 복합거동을 분석하기 위해 In-DEBS 주위로 4개의 시험공을 굴착하여 총 40개의 온도 센서와 5개의 간극수압계를 설치하였다. 또한 근계암반의 변위를 측정하기 위해 원거리에서 두 개의 경사공을 굴착하여 총 10개의 변위 센서를 삽입하였다. In-DEBS에는 공학적방벽시스템에 온도, 상대습도, 압력, 그리고 변위 센서 등 총 185개의 센서가 설치되어 있으며, 이 센서들은 모두 다채널 동시 측정이 가능한 계측시스템에 연결되어 실시간으로 현장데이터를 저장하게 된다.
        5,400원
        10.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 In-DEBS (In-situ Demonstration of Engineered Barrier System) 시험장치에 대한 설계안을 도출하고, 현장실증용 공학적방벽재의 생산을 위한 최적 제작조건을 도출하는 것이다. 이와 관련하여 그간 한국원자력연구원에서 수행한 실증실험 수행경험과 문헌분석 그리고 선진핵주기 고준위폐기물처분시스템(AKRS)을 근거로 시험장치를 설계하였다. 또한 처분용기와 벤토나이트 완충재는 시험제작을 통해 최적의 제작조건을 도출하였고, 예비 성능평가를 통해 제작된 공학적방벽재의 성능을 검증하였다. In-DEBS 현장시험을 위해서 AKRS의 1/2.3 규모로 설계하였으며, 고른 온도분포의 핵연료 모사를 위하여 설계 전력량 4.2 kW의 알루미늄 재질 몰드히터를 사용하였다. 한편 In-DEBS에 사용될 공학규모 이상의 균질 완충재 블록을 제작하기 위해 플롯팅 다이(floating die) 방식의 프레스 재하 및 냉간등방압프레스(CIP; Cold Isostatic Press) 기법을 국내 최초로 완충재 제작에 적용하였다. 연구결과 AKRS 완충재 블록 제한요건(건조밀도 › 1.6 kg·cm-3)을 충족하기 위해서는 1차로 40 MPa 이상의 플롯팅 다이 프레스 압력을 가하고, 2차로 50 MPa의 CIP 압력이 소요됨을 확인하였다. 또한 완충재 블록 내 센서설치를 위하여 CNC (Computer Numerical Control) 기법을 이용하여 센서위치를 정교하게 성형하였다
        5,500원
        11.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        선진핵주기고준위폐기물처분시스템(A-KRS, Advanced Korean Reference Repository System)을 기반으로 한 공학규모 공학적방벽시스템 열-수리-역학적 복합거동 현장시험(In-DEBS, In-situ Demonstration of Engineered Barrier System)은 2012년부터 기획되었다. 한국원자력연구원의 자체기술로 전체 시스템 구성요소를 설계하고 제작하여 2016년 5월 한국원자력 연구원의 지하처분연구시설(KURT, KAERI Underground Research Tunnel)에 설치하였다. 2016년 7월에 정상운영을 시작하여 현재까지 양질의 열-수리-역학 데이터를 생산하고 있다. 이 시험은 국내에서 최초로 설치하여 운영되는 고준위폐기물 심층처분시스템 공학규모 현장시험으로써, 대규모 공학적방벽 제작기술 개발 및 검증, 처분시스템 설치방법 개발 및 검증, 국내산 벤토나이트의 장기 열-수리-역학 거동 자료 확보, 공학적방벽 국내산 벤토나이트 완충재의 열-수리-역학(THM, thermal-hydro-mechanical) 복합거동특성 현장시험 및 THM 복합모델링 기술 검증, 공학적방벽 완충재 THM 특성 측정 및 모니터링 기술 개발 등을 통한 국내 고준위폐기물 심층처분시스템 공학적방벽의 성능검증 기술개발을 최종 목표로 하고 있다. KURT 기반 In-DEBS의 성공적인 설치와 운영을 통해 공학규모 공학적방벽의 제작 및 설치 기술을 확보할 수 있을 뿐 아니라 여기에서 생산되는 데이터를 이용하여 처분기술개발의 핵심 분야인 공학적방벽 THM 복합모델링 기술의 개발 및 검증 능력도 갖추게 될 것이다. 따라서 향후에 수행될 우리나라 고유의 실규모 처분시스템 실증기술 개발을 위한 귀중한 정보를 제공해 줄 것으로 기대된다.
        4,600원
        13.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        현재까지 개발된 고준위폐기물 심지층처분장의 열-수리-역학적 복합거동 해석을 위한 전산 코드의 현황을 조사하고, 문헌에 보고된 각 코드에 의한 계산치와 현장실험 측정치의 비교 결과를 이용하여, 기존 전산 코드들의 신뢰도를 분석하였다. 개발된 전산코드들은 완충재가 없는 처분장에서는 붕괴열에 따른 암반의 열-수리-역학적 거동을 비교적 잘 모사하였으나, 포화 경암층에 위치한 완충재가 존재하는 처분장의 공학적방벽시스템 내에서 일어나는 열-수리-역학적 복합거동의 예측은 만족스럽지 못하였다. 현재 제안된 열-수리-역학적 복합거동 해석모델을 고준위폐기물 처분장 공학적방벽시스템의 거동 해석에 적용하기위해서는 완충재 내의 수분함량 및 전 압력 분포를 보다 정교하게 모사할 수 있도록 수학적 모델의 개선이 필요하다.
        4,600원
        14.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        한국형 기준 처분시스템의 공학적 방벽에서의 열-수리-역학 복합 현상을 실증하기 위한 공학적 규모 실증실험 장치인 KENTEX에서 얻은 열, 수리, 역학적 실험 데이터를 이용하여 벤토나이트의 포화공정을 해석하였다. ABAQUS를 사용한 모델계산의 함수율과 실험 결과의 비교에서 불포화 영역에서는 온도상승으로 인해 초기 수분이 감소하는 수분 재분포 공정을 모델에 포함시키지 않아 함수율의 차가 컸다. 포화영역에서는 실험에서 초기 수분보다 낮은 함수율에서부터 지하수로 포화가 진행되지만 모델과 실험에서 얻은 함수율 값의 차이가 점점 감소해 완전포화에 도달할 때에는 두 함수율 값이 거의 비슷한 결과를 보여주었다. 포화도 약 95%에 이르는 시간은 실험결과와 계산 결과가 서로 비슷한 약 500일 정도로 예측할수 있었다. 그리고 불포화 영역의 수분 재분포가 벤토나이트의 완전포화에 도달하는 시간에는 큰 영향을 미치지 않는 것으로 분석되었다. 따라서 본 해석기법을 사용하면 지하처분연구시설의 완충재인 벤토나이트의 포화시간을 예측할 수 있을 것으로 판단된다.
        4,000원