The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.
This study is an attempt to develop modular house structural systems with safety seismic performances under maximum seismic load of 0.3G. The modular house system was designed with joints (plan) using four-clip simple fastening type, and was also adopted a type of double inter-metallic assembly modular systems using a light metal. The seismic performance was evaluated.
The mechanical behavior of the fasting system on the clamping forces has not been fully studied because of structural complexity. The goal of this research is studying the effect of nonlinear of the rail fastening system on the clamping forces in the railway bridges. A numerical model is proposed to analyze the problem of fasteners. The model is conducted by using a code in FORTRAN. In this study, fasteners are modelled as springs. The calculated results show a good agreement with values referred from manufacturer. As a result, the numerical simulation is believed to indicate an approximate value of clamping force considering the nonlinear behavior of fastening system.
The tramway embedded track is the concrete slab track in which rail is embedded for transit and walking over the pavement. The multi-directional continuous supported embedded track system by liquid polyurethane has high performance in reducing sound and vibration, the advantage of maintenance abroad. Domestic newly-developed embedded track was installed in Osong-test site after laboratory test and yard test. In this paper, newly –developed Polycork ERS rail fastening system was tested and the embedded track system was tested in the field
This paper deals with researching and designing the fastening parts to be used in order to assemble various Teaching Aids Robots (or Hands-on Robots) with originally incompatible parts supplied by different manufacturers. The suggested fastening parts provide the compatibility among Teaching Aids Robots even though the educational robot customers use incompatible parts from different companies. The designed fastening parts are classified into four set groups such as frame set, sliding-bar set, connector set, and set of chuck and rivet/bolt. Each set of the fastening parts reflects the needs collected from the users, and then some portion of new idea has been added to implement the needs. In this paper, the examples of the Teaching Aids Robots which are assembled with both commercial parts and the designed parts are presented in order to evaluate the compatibility and usability of the suggested fastening parts. As a result, both compatibility and usability of the fastening parts suggested in this paper were proved. The designed fastening parts have been distributed to more than 100 elementary schools nationwide.
철도교량의 경우, 열차하중에 의한 영향으로 교량 단부에서 상향력이 발생하였으며, 이 상향력은 체결장치에 압축력과 인장력을 유발시켰다. 현재까지 이에 대한 안전성을 검토하기 위해 체결장치를 1방향의 스프링 요소로 모사하여 구조해석을 수행해 왔다. 이러한 경우에 스프링 요소의 강성은 압축력을 재하한 실험적 연구에 의하여 산정되었다. 따라서, 상향력은 체결장치에 압축력뿐만 아니라 인장력도 유발시키기 때문에 합리적이고 정확한 구조해석을 수행하기 위해서는 인장력을 재하한 실험적 연구로부터 산정된 병진방향 강성 그리고 회전방향 강성을 함께 고려해야 한다. 본 연구에서는 6가지 실험체에 대하여 탄성과 비탄성 실험을 수행하여 레일 연직방향 병진강성과 레일 강축에 대한 회전강성을 검토하였고, 체결장치의 구조적인 거동을 분석하였다.