This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20°C (24h), a humidity of 70%, and an average light intensity of 80 μmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory.
새싹삼의 유효성분 및 진세노사이드를 함유한 발효주 제조를 위해 3단계로 나누어 각 2일씩 발효 증량하면서 발효주를 제조 한 후 전처리 방법을 달리한 새싹삼(CO, 무첨가 대조군; GP 새싹삼 분쇄물 첨가; WEP, 새싹삼 물추출물; EEP, 새싹삼 효소분해 추출물)을 발효주의 총 무게 대비 6%씩 함유하도록 첨가하여 6일간 숙성시키면서 이화학적 특성을 분석하였다. 3단계까지의 담금 과정에서 알코올 함량은 담금 단계가 이어질수록 높아졌으며, pH는 낮아지고, 산도는 증가하는 경향이었다. 3단계 담금 후 6일간의 숙성 동안 알코올 함량은 서서히 높아졌으며, pH는 서서히 낮아지고 산도가 증가하였다. 숙성 6일 동안 환원당 함량은 감소하는 경향이었는데, 특히 숙성 2일에 급격하게 함량이 감소하였다. 총페놀화합물의 함량은 숙성이 진행됨에 따라 점차 증가하는 경향이었다. 발효주의 숙성 중 진세노사이드는 Re가 가장 높은 함량이었으며 다음으로 Rg1과 Rh1의 순으로 함량이 높았고, 그 외의 진세노사이드는 일부 시료에서만 검출되었으며, 그 함량도 낮았다. 숙성 초기의 진세노사이드 함량은 GP와 EEP가 WEP에 비해 더 높았으나 숙성기간의 경과와 더불어 점차 감소하여 숙성 6일후에는 WEP에서 총진세노사이드의 함량이 가장 높았다. 숙성기간 중 ABTS 라디칼 소거활성은 숙성 기간의 경과와 더불어 증가하는 경향이었으며, 숙성 6일에는 62.64-64.71%로 서로 간에 유의적인 차이가 없었다. 이상의 결과로부터 볼 때 담금이 진행 된 후 첨가된 새싹삼은 전처리 방법에 관계없이 발효주의 기초 품질에는 영향을 미치지 않았으나 진세노사이드 함량을 기준으로 볼 때 50℃ 정도의 저온에서 추출한 물추출물을 첨가하는 것이 가장 적절할 것으로 판단된다.
Background : The major active components of ginseng are ginsenosides and their pharmacological effects include anticanser, anti-stress, anti-fatigue, antioxidant and aging inhibitory effects. These ginsenosides components is higher in leaves than roots. Therefore, consumers are increasingly interested in using ginseng sprouts.
Methods and Results : Ginseng sprouts were cultivated during 60 days from June to late July in greenhouse. After 60 days of cultivation, the stem was hardened, and the cultivation was done until 60th because of the tendency that the value of ginseng sprouts was lowered. The content of the three indicator components were analysed by high performance liquid chromatography. Total ginsenoside content increased 1.07 times in leaves and decreased 0.67 times in roots according to cultivated period. The contents of ginsenoside Rg1, Re, Rb1, Rc F3 and F4 of leaves were increased and ginsenoside Rg1, Re, Rb1, Rb2 and Rf of roots were decreased on cultivated 60 days, especially. Total free sugar content increased 1.29 times in leaves and decreased 0.68 times in roots according to cultivated period. The total phenolic acid contents of leaves decreased slightly until 40 days and then increased. The major components of ginsenoside, free sugar and phenolic acid in leaves were Re, sucrose and sinapic acid, respectively.
Conclusion : From the above results, ginseng sprouts cultivated for 60 days is more effective ingredient than roots, so it can be said that it is good for consumers to use.
Background: Since the revised Ginseng Industrial Act was passed, ginseng sprouts have become a new medicinal vegetable for which there is high consumer demand. However, the existing amount of research and data on ginseng production has not kept pace with this changed reality.
Methods and Results: In this study we analyzed the changes in the amounts of ginsenosides in different parts of growing ginseng sprouts during the period from when organic seedlings were planted in nursery soil until 8 weeks of cultivation had elapsed, which was when the leaves hardened. In the leaves, ginsenoside content increased 1.62 times with the panaxadiol (PD) system and 1.31 - 1.56 times with the panaxatriol (PT) system from 7 to 56 days after transplantation. During the same period, the total ginsenoside content of the stems decreased by 0.66 - 0.91 times, and those of the roots increased until the 21st day, and then underwent steep declines. The effect of fermented press cake extract (FPCE) and tap water (TP) on the total amount of ginsenoside per plant were similar, and could be represented with the equations y = 1.4330 + 0.2262x - 0.0008x2 and y = 0.9555 + 0.2997x - 0.0031x2 in which y = ginsenoside content x = amount of and on the total amounts of FPCE or TP, respectively after 26.4 days, however, the difference between ginsenoside content with FPCE and TP widened.
Conclusions: These results suggested that the amounts of ginsenosides in different parts of ginseng varied with the cultivation period and nutrient supply. These findings also provide fundamental data on the distribution of ginsenosides among plant parts for 2- year-old ginseng plants in the early- growth stage.