본 연구는 구리 아연 금속합금의 산화 환원 반응과 합성 알루미늄 실리케이트의 흡착 반응을 이용한 폐수 중 중금속 처리에 관한 연구이다. 극세사 형태로 제조된 구리 아연 금속합금이 수용액 중에 서 산화 환원반응에 의해 아연보다 이온화 경향이 작은 중금속은 환원 처리되고, 이온화 된 아연 및 미 반응 중금속은 흡착 처리하여 제거하는 연구이다. 극세사 형태로 제조된 금속합금 물질은 표면적이 커서 1회 처리만으로도 반응 평형에 도달하게 하여 효율이 높은 것으로 나타났다. 크롬(Cr+3)은 redox 반응 1 회 처리만으로도 100.0 % 제거 되었으며, 수은은 98.0 %, 주석 92.0 %, 구리는 91.4 % 정도 제거되었 다. 카드뮴, 니켈, 납도 각각 40.0 %, 50.0 %, 58.0 %가 제거 되었다. 크롬(Cr+3)은 아연과 이온화 경향 차이가 거의 없지만 제거 효율이 높은 것으로 나타났는데 이는 3가 크롬은 이온 상태로 존재하면 redox 반응에서 발생한 OH- 이온과 결합하여 수산화물 침전을 형성하는 것으로 판단된다. Redox 반응 후 증 가한 아연 및 미반응 중금속 농도를 알루미늄실리케이트를 1회 통과하여 거의 100.0 % 제거할 수 있었 다. 이는 합성 알루미늄 실리케이트의 비표면적이 크고 금속 이온의 흡착능력이 우수한 것으로 나타났으 며, 반응 후 알루미늄 이온은 증가하지 않는 것으로 보아 이온 교환이 아닌 흡착으로 아연 및 중금속 이 온들을 제거할 수 있는 것으로 나타났다.
In this work, the effect of anodic oxidation treatment on Cr(VI) ion adsorption behaviors of activated carbon fibers (ACFs) was investigated. The aqueous solutions of 10 wt% H3PO4 and NH4OH were used for acidic and basic electrolytes, respectively. Surface characteristics and textural properties of ACFs were determined by XPS and N2 adsorption at 77 K. The heavy metal adsorption of ACFs was conducted by ICP. As a result, the adsorption amount of the anodized ACFs was improved in order of B-ACFs 〉 A-ACFs 〉 pristine-ACFs. In case of the anodized treated ACFs, the specific surface area was decreased due to the pore blocking or pore destroying by acidic electrolyte. However, the anodic oxidation led to an increase of the Cr(VI) adsorption, which can be attributed to an increase of oxygen-containing functional groups, such as, carboxylic, lactonic, and phenolic groups. It was clearly found that the Cr(VI) adsorption was largely influenced by the surface functional groups, in spite of the reduced specific surface area of the ACFs.
We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging 5,700~20,000 was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of 25~45℃. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.
Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging 9,000~120,000 was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of 15℃~45℃. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.
This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component(ZnCl2) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to 800℃ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at 700℃ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.
국내 경상북도 포항 지역에서 채취한 6종의 천연 제올라이트를 X-선 회절, X-선 형광분석, 열 시차 분석, 열중량 분석 및 양이온교환능 분석을 통해 특성분석을 수행하였다. 이들 제올라이트의 주 성분은 구룡포A (Ku-A), 구룡포B (Ku-B), 구룡포C (Ku-C), 동해A (Dh-A), 동해B (Dh-B), 동해C (Dh-C) 모두 모데나이트, 알바이트 및 석영이 함유되어 있었다. 6종의 제올라이트는 Si, Al, Na, K, Mg, Ca, Fe을 함유하고 있었으며 구룡포C (Ku-C) 제올라이트의 양이온 교환능이 다른 지역의 제올라 이트 보다 높게 나타났다. 6종의 천연 제올라이트를 이용하여 Pb2+, Cd2+ 및 Cu2+ 등의 중금속 이온을 제거하는데 소요되는 반응 시간의 효과를 비교하였다. 6종의 천연 제올라이트 모두 Pb2+, Cd2+ 및 Cu2+ 제거율이 매우 낮게 나타났다. 이는 6종의 천연 제올라이트에 함유된 제올라이트의 함량이 매우 낮기 때문으로 판단된다. 본 연구 결과는 제올라이트 광석의 중금속 흡착능력은 제올라이트의 함량, 즉 광석의 품위에 크게 의존되는 경향을 보여주고 있다.
본 연구에서는 표면개질 활성탄을 이용하여 수용액상에서 혼합 중금속(Cr6+, As3+)의 흡착능을 평가하였고 또한 표면개질 활성탄을 안정화제로 활용하여 해양오염퇴적물 내 As 및 Cr에 대하여 중금속 안정화 실험을 수행하였다. 실험결과, 흡착평형은 약 120분 후에 도달하였다. 또한, 중금속 등온 흡착 특성은 Freundlich 및 Langmuir 방정식을 이용하여 해석하였으며, 평형흡착 실험결과는 Langmuir 모델에 잘 부합되었고 As3+ (28.47 mg/g)가 Cr6+ (13.28 mg/g)보다 평형 흡착량이 많았다. Cr6+인 경우, 용액의 pH가 6에서 10으로 증가함에 따라서 흡 착량은 감소하는 것으로 나타났다. 하지만 pH 증가 변화에서 As3+의 흡착량은 미미한 증가를 보였다. 안정화 방법은 오염퇴적물에 표면 개질한 활성탄 첨가 후 120일간 습윤 양생하였다. 연속추출 실험결과로부터, 미처리 오염퇴적물과 비교해서 Cr 및 As의 이온교환, 탄산염, 산화물 및 유기물 존재 형태 합의 비는 각각 5.8% 및 7.6% 감소하였다.
To examine the potency of biosorbent, the adsorption capacity of Pseudomonas cepacia H42 isolated from fresh water plant root was compared with Saccharomyces cerevisiae SEY2102 on bases of biomass, concentration of heavy metal, presence of light metals, immobilized cell, and ion exchange resin. P. cepacia H42 biomass of 0.05-0.5 g/L increased adsorption and above 1.0 g/L of yeast biomass was the most effective in adsorption. By applying the same amount of biomass, lead showed the highest adsorption on two strains and the adsorption strength was lead>copper>cadmium on both strains. The high heavy metal concentration induced the high adsorption capacity. P. cepacia H42 adsorption was in the order of copper>lead>cadmium and lead>copper>cadmium by yeast in 10 mg/L. Both strain showed same adsorption strength in the order of lead>copper>cadmium in 100 mg/L and 1000 mg/L. The adsorption capacity of both yeast and P. cepacia H42 was decreased in the presence of light metals and the order of cadmium>copper>lead. Mg 2+ induced the least adsorption while Na + induced highest adsorption. The adsorption capacity of immobilized yeast and P. cepacia H42 was detected between 200-400 mL in flow volume and decreased in the presence of light metals. Ion exchange containing light metals caused 30-50% adsorption reduction on both strains.
포항지역 널리 분포하고 있는 규질이암으로부터 상업화를 위한 50리터 bench scale 수열장치를 사용하여 Na-A형 제올라이트의 합성을 성공적으로 수행하였고 또한 이 제올라이트를 이용하여 환경 개선재로 활용하는 연구를 수행하였다. 초기물질로 사용된 규질이암은 제올라이트의 주요 성분인 SiO2 및 Al2O3가 각각 70.7% 및 10.0% 함유되어 제올라이트의 합성에 유리한 조성을 가지고 있다. 이전의 실험실적 규모에서 수행된 동일한 조건인 Na2O/SiO2 = 0.6, SiO2/Al2O3 = 2.0, H2O/Na2O = 98.6의 조성비로 80℃에서 18시간 동안 합성한 결과, Na-A형 제올라이트의 결정도 및 결정형태는 실험실적 규모와 유사하였고, 회수율 및 양이온 교환능은 각각 95% 및 215 cmol/kg으로 실험실적 규모에서 보다 약간 우수한 결과를 나타냈다. 합성된 Na-A형 제올라이트를 이용하여 모사폐액(Pb, Cd, Cu, Zn 및 Mn)에 중금속 제거율을 조사한 결과, 중금속 제거율은 Pb 〉 Cd 〉 Cu = Zn 〉 Mn의 순서이었다. Mn을 제외한 다른 중금속들은 1500 mg/L에서 99% 이상의 제거율을 보였고, Mn의 경우도 98%의 제거율을 보여 합성된 Na-A형 제올라이트는 중금속 흡착제로서 우수한 특성을 나타냈다.
Removal of Cu(Ⅱ), Cr(Ⅱ) and Pb(Ⅲ) ions from aqueous solutions using the adsorption process on the loesses has been investigated. Variations of contact time, pH, adsorption isotherms and selectivity of coexisting ions were experimental parameters. pH of KJ and YIK samples diluted to 1% solution, was rearly the same with each value of pH 5.58 and 5.49, and both samples showed weak acidic properties. From chemical analysis, both samples contain remarkably different amounts of SiO2, Al2O3 and Fe2O3. From XRD measurement, quartz was mainly observed in both samples. Kaolinite was also observed, also in both samples, but Feldspar was only observed in KJ sample. Adsorption of metal ions on the loesses were reached at equilibrium by shaking for about 30min. The adsorption of Cr(Ⅲ) ion was higher than that of Cu(Ⅱ) and Pb(Ⅱ) ions. The order of amount adsorbed among the investigated ions was Cr(Ⅲ)>Pb(Ⅱ)>Cu(Ⅱ). In acidic solution, the adsorptivity of loesses was increased as pH increased. The adsorption of Cr(Ⅲ) ion on the loesses were fitted to the Freundlich isotherms. Freundlich constants(l/n) of KJ and YIK loesses were 0.54 and 0.55, respectively.
Cation exchange distribution coefficients of poly(dithiocarbamate) were presented for Cd^2+, Cr^3+, and Pb^2+ in HCl. The distribution coefficients were determined by using the batch method. Based on these distribution data, the separation possibilities of the heavy metal ions were discussed.
The distribution coefficients of three heavy metal ions on dithiocarbamate resin were decreased as HCl concentrations were increased. The selective separation of Cr^3+ and Cd^2+ was possible by using 0.1 M HCl in dithiocarbamate resin and the reproducibility test showed that the average absorptivity of resin was 90% in the case of Cd^2+ ion by the column method.
This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions.
The order in heavy metal ions adsorbed on scoria was; Pb^+>Cd^2+>Cu^2+>Ag^+>Co^2+>Zn^2+>Cr^3+>Cr^6+. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared.
Adsorption isotherm of scoria was generally obeyed to Freundlich formula than Langmuir formula and Freundlich constant, 1/n was obtained in the range of 0.2∼0.4.
This study was conducted for the efficient utilization of biomaterials such as starch residue, tangerine skin, and green tea residue, which are agricultral by-products discarded in Cheju Province annually, as adsorbents and biomaterials were examined for their removal ability of heavy metal ions in waste water by batch adsorption experiments. The removal efficiency of biomaterials for heavy metal ions was above 80-90% and almost similar to activated carbon and the adsorption ability of those treated with 포르말린 was improved in the green tea residue only for Pb^2+, Cu^2+, and Zn^2+. In the conditions of pH, the removal efficiency of heavy metal ions was high in the range of 5-7. In the solutions which heavy metal ions were mixed, the removal efficiency was similar at Ag^+, Pb^2+ and reduced to about 10% at the other ions, as compared with the solutions they were not mixed. Adsorption isotherms of biomaterials was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, 1/n were obtained in the range of 0.1-0.5.