글로벌 경제 침체 속에서 기업은 날로 높아져 가는 소비자들의 수요를 만족하기 위하여 납기 대응 그리고 LB(Line Balance, 라인편성효율) 향상과 제조원가의 절감을 위한 생산성 향상은 중요한 개선 항목이다. 따라서 본 연구에서는 자동차 물류 중 조달물류를 대상으로 하여 불출자의 로드밸런스율을 증대할 수 있는 휴리스틱 알고리즘 개발에 대하여 연구를 진행함으로써 1차 목표 값을 적용하였을 load balancing율은 45.6%에서 91.7%로 개선 된 것을 확인할 수 있었다.
Companies are pursuing the management of small quantity batch production or JIT(Just-in-time) system for improving the delivery response and LOB(Line Balancing) in order to satisfy consumers’ increasing demands in the current global economic recession. And in order to improve the growth of production for reducing manufacturing cost, improvements of the Load Balancing have become an important reformation factor. Thus this paper is aimed at warehouse which procures materials on the assembly line in procurement logistics of automotive logistics and proceed with research on heuristic algorithm development which can increase the Load Balancing of workers. As a result of this study, when applied the primary target value, it was verified that the whole workers decreased from 28 to 24. Furthermore, when specified the secondary target value and applied algorithm once more, it was verified that the Load Balance Ratio was improved from 44.96% to 91.7%.
Maritime transport is now regarded as one of the main contributors to global climate change by virtue of its CO2 emissions. Meanwhile, slow steaming, i.e., slower ship speed, has become a common practice in the maritime industry so as to lower CO2 emissions and reduce bunker fuel consumption. The practice raised various operational decision issues in terms of shipping companies: how much ship speed is, how much to bunker the fuel, and at which port to bunker. In this context, this study addresses an operation problem in a shipping companies, which is the problem of determining the ship speed, bunkering ports, and bunkering amount at the ports over a given ship route to minimize the bunker fuel and ship time costs as well as the carbon tax which is a regulatory measure aiming at reducing CO2 emissions. The ship time cost is included in the problem because slow steaming increases transit times, which implies increased in-transit inventory costs in terms of shippers. We formulate the problem as a nonlinear lot-sizing model and suggest a Lagrangian heuristic to solve the problem. The performance of the heuristic algorithm is evaluated using the data obtained from reliable sources. Although the problem is an operational problem, the heuristic algorithm is used to address various strategic issues facing shipping companies, including the effects of bunker prices, carbon taxes, and ship time costs on the ship speed, bunkering amount and number of bunkering ports. For this, we conduct sensitivity analyses of these factors and finally discuss study findings.
To ensure that the production system of a factory is efficient, the factory layout design should consider the location and material flow plans of facilities, workshops, and storage areas. Highly productive factories need to have an optimized layout planning process, and a customized design methodology of the production system is a necessity for feasible layout planning. This paper presents a method for designing a layout module's size and shape and provides a heuristic location-allocation algorithm for the modules. The method is implemented and validated using a rich internet application-based platform. The layout design method is based on the leisure ship production process; this method can be used for designing the layout of a new factory or remodeling an existing factory and its production system. In contrast to existing layout methods, the inputs required for the proposed method, such as target products, production processes, and human-resource plans, are simple. This layout design method provides a useful solution for the initial stage of factory design.
In this paper, we raised the performance of heuristic algorithm to assign job to workers in parallel line inspection process without sequence. In previous research, we developed the heuristic algorithm. But the heuristic algorithm can't find optimal solution perfectly. In order to solve this problem, we proposed new method to make initial solution called FN(First Next) method and combined the new FN method and old FE method using previous heuristic algorithm. Experiments of assigning job are performed to evaluate performance of this FE+FN heuristic algorithm. The result shows that the FE+FN heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are optimal solutions, this heuristic algorithm can find the optimal solution perfectly.
To date, facility layout problems has been solved and applied for job shop situations. Since flow shop has more restrictions, the solution space is much smaller than job shop. An efficient heuristic algorithm for facility layout problems for flow shop lay
Finding the critical path (or the longest path) on acyclic directed graphs, which is well-known as PERT/CPM, the ambiguity of each acr’s length can be modeled as a range or an interval, in which the actual length of arc may realize. In this case, the min-
Finding the critical path (or the longest path) on acyclic directed graphs, which is well-known as PERT/CPM, the ambiguity of each acr's length can be modeled as a range or an interval, in which the actual length of arc may realize. In this case, the min-max regret criterion, which is widely used in the decision making under uncertainty, can be applied to find the critical path minimizing the maximum regret in the worst case. Since the min-max regret critical path problem with the interval arc's lengths is known as NP-hard, this paper proposes a heuristic algorithm to diminish the maximum regret and the computational experiments shows the proposed algorithm contributes to the improvement of solution compared with the existing heuristic algorithms.
Finding the critical path (or the longest path) on acyclic directed graphs, which is well-known as PERT/CPM, the ambiguity of each acr's length can be modeled as a range or an interval, in which the actual length of arc may realize. In this case, the min-max regret criterion, which is widely used in the decision making under uncertainty, can be applied to find the critical path minimizing the maximum regret in the worst case. Since the min-max regret critical path problem with the interval arc's lengths is known as NP-hard, this paper proposes a heuristic algorithm to diminish the maximum regret and the computational experiments shows the proposed algorithm contributes to the improvement of solution compared with the existing heuristic algorithms.
In this study, we developed a heuristic algorithm to get better efficiency of clustering than conventional algorithms. Conventional clustering algorithm had lower efficiency of clustering as there were no solid method for selecting initial center of cluster and as they had difficulty in search solution for clustering. EMC(Expanded Moving Center) heuristic algorithm was suggested to clear the problem of low efficiency in clustering. We developed algorithm to select initial center of cluster and search solution systematically in clustering. Experiments of clustering are performed to evaluate performance of EMC heuristic algorithm. Squared-error of EMC heuristic algorithm showed better performance for real case study and improved greatly with increase of cluster number than the other ones.
In this paper, we developed a heuristic algorithm to assign job to workers in parallel line inspection process without sequence. Objective of assigning job in inspection process is only to assign job to workers evenly. But this objective needs much time and effort since there are many cases in assigning job and cases increase geometrically if the number of job and worker increases. In order to solve this problem, we proposed heuristic algorithm to assign job to workers evenly. Experiments of assigning job are performed to evaluate performance of this heuristic algorithm. The result shows that heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are more than two optimal solutions, this heuristic algorithm can find the optimal solution with 98% accuracy.
본 논문은 시간 제약을 갖는 차량 라우팅 문제를 해결하기 위해 유전자 알고리듬과 부분 최적화 알고리듬을 적용한 방법을 소개한다. 유전자 알고리듬에서의 염색체는 노드를 나타내는 정수의 순열로 표현되어 직접적인 해를 나타내지 않지만, 경험적 방법에 의한 해석을 통해 유효한 해로 변형되도록 하였다. 유전자 알고리듬에 의해 생성된 주어진 수의 우수한 해들에는 세 부분 최적화 방법이 순차적으로 적용되어 보다 좋은 해를 생성하도록 하였다. 부분 최적화 방법들에
The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound imag
본 논문에서는 운송비용과 재고유지비용의 합을 최소화하는 것을 목적으로 유한 계획기간 동안의 수요를 충족시키는 동적 랏사이징 문제를 다룬다. 운송비용을 고려하는 기존의 랏사이징 모형들과는 달리 운송 트럭의 대수에 따라 계단형으로 운송비용이 증가하는 경우를 다루고 있다. 이 문제를 선형정수모형으로 모델링하며 그리디 방식의 휴리스틱을 제안한다. 제안된 휴리스틱의 성능을 평가하기 위해 계산실험을 수행하며, 그 결과 매우 짧은 시간 안에 최적해에 가까운 해를
This paper presents a data-mining aided heuristic algorithm development. The developed algorithm includes three steps. The steps are a uniform selection, development of feature functions and clustering, and a decision tree making. The developed algorithm
This paper proposes a heuristic scheduling algorithm to satisfy the customer''s due date in the production process under make to order cnvironment. The goal is to achicve the machine scheduling in the transformer winding process, in which consists of para