Total dissolved solids (TDS) 제거에 이용되는 이온교환수지는 컬럼에 충진시켜 사용하게 되는데, 이온교환 과정 에서 이온성 물질과 이온교환수지의 충분한 접촉시간을 필요로 한다. 본 연구에서는 이온교환수지의 분체화를 통하여 짧은 접촉시간으로도 높은 TDS 제거 성능을 보이는 이온교환수지의 특성을 연구하였다. 흐름성 등을 고려한 분체의 최적 크기는 100 μm 이상임을 확인하였고, 250~500 μmd와 100~250 μm 크기의 최대 분쇄 수율은 각각 67.3%와 36.9%였다. 또한 100~500 μm 크기의 분쇄 수율은 분쇄 시간 2분에서 87.1%로 나타났다. 회분식(batch) 실험 조건에서 250~500 μm 크기의 분체가 95%와 99%의 제거율에 도달하는 시간은 분쇄 전(non-pulverized) 이온교환수지에 비해 각각 1.82배와 1.96배 더 빨랐 다. 100~250 μm 크기의 분체는 각각 15.9배와 6.18배 더 빨랐다. 컬럼 테스트의 경우 분쇄 전 이온교환수지는 총 1.74 g, 250~500 μm 크기의 분체는 1.83 g, 100~250 μm 크기의 분체는 1.63 g의 NaCl을 제거하였다. 분체의 크기가 작아질수록 용 량(capacity)이 약간 감소한 것으로 나타났다. 결과적으로 분체화된 이온교환수지를 사용하는 것이 접촉시간 대비 높은 TDS 제거 성능을 얻을 수 있는 방법임을 확인하였다.
Spent ion exchange resins have been generated during the operation of nuclear facilities. These resins include radioactive nuclides. It is needed to fabricate them into a stable form for final disposal. Cement solidification process is a useful method for the fabrication of them into a waste form for final disposal. In this study, proper conditions for the fabrication of them into a stable waste form were determined using the cement solidification process. In-drum waste forms were then produced at the conditions, where the stability of representative samples was evaluated for final disposal. The samples were satisfied to the Waste Acceptance Criteria for low and intermediate level radioactive waste disposal sites. This result can be utilized to derive optimal conditions for the fabrication of spent ion exchange resins into a final disposal form.
This study aimed to remove uranium (U(VI)) ions from sulfate-based acidic soil-washing effluent using the ion-exchange method. For effective ion exchange of U(VI) ions under acidic conditions, one chelate resin (Purolite S950) stable under low pH conditions and two anion-exchange resins (Ambersep 400 SO4 and 920U SO4) used in sulfuric acid leaching systems were selected. The exchange performance of the three selected ion-exchange resins for U(VI) ions was evaluated under various experimental conditions, including ion-exchange resin dosages, pH conditions, reaction times, and reaction temperatures. U(VI) ion exchange was consistent with the Langmuir model and followed pseudo-second-order kinetics. Thermodynamic experiments revealed that the U(VI) ion exchange by the ion-exchange resins is an endothermic and spontaneous process. On the other hand, U(VI) ions was effectively desorbed from the ion-exchange resins using 0.5 M H2SO4 or Na2CO3 solution. Overall, on the basis of the results of the present study, we propose that Purolite S950, Ambersep 400 SO4, and Ambersep 920U SO4 are ion-exchange resins that can be practically applied to effectively remove U(VI) ions from sulfate-based acidic soil-washing effluents.
전자 및 화학 산업의 초순수 생산 및 원자력 발전소의 부식 제어를 위해 이온교환 수지탑의 성능 파악이 필수적이다. 따라서 본 연구에서는 4종의 H 및 ETAH 형 양이온 교환수지가 채워진 양이온 및 혼상 이온교환수지탑에 미량의 NaCl를 포함하는 에탄올아민(ETA) 및 암모니아(NH3) 용액을 주입하여 양이온 파과특성을 조사하였다. 조사 결과, 주성분인 ETAH+ 및 NH4 +와 달리, 미량성분인 Na+는 (이론적교환용량의 3배 이상) 시험기간 동안 수지탑 출구에서 파과 및 오버슈팅 현상이 나타나지 않았다. H형 수지탑의 파과현상은 ETAH+ 및 NH4 +가 순서대로 일어났고, 오버슈팅은 NH4 +가 파과할때 ETAH+에 대해서 발생했다. 파과영역의 너비로 결정되는 상대적 선택도는 NH4 +가 ETAH+보다 최대 51.5 % 더 높았다. 유입수 Na+ 농도가 높을수록, 선택도는 감소하고 오버슈팅 현상은 증가하였다. 이온교환 수지의 고유 특성을 개선하여 감소시킬 수 있는 Na+ 누출은, ETAH형에서 높았고 4종의 양이온수지에 대해 동일하지 않은 것으로 조사되었다.
With the significant increase in spent ion-exchange resin generation, to meet the requirements of Waste Acceptance Criteria (WAC) of the Wolsong disposal facility in Korea, blending is considered as a method for enhancing disposal options for intermediate level waste from nuclear reactors. A mass balance formula approach was used to enable blending process with an appropriate mixing ratio. As a result, it is estimated around 44.3% of high activity spent resins can be blended with the overall volume of low activity spent resins at a 1:7.18 conservative blending ratio. In contrast, the reduction of high activity spent resins is considered a positive solution in reducing the amount of spent resins stored. In an economic study, the blending process has been proven to lower the disposal cost by 10% compared to current APR1400 treatment. Prior to commencing use of this blending method in Korea, coordinated discussion, and safety and health assessment should be undertaken to investigate the feasibility of fitting this blending method to national policy as a means of waste predisposal processing and management in the future.
본 연구에서는 RO(Reverse osmosis) membrane과 이온교환수지를 이용하여 방사성 이온을 제거하였다. RO필터 2개회사, 3종(1종은 세정한 폐필터)으로 요오드와 세슘을 포함하는 공급수에 대해 2bar, 4bar의 압력, 10, 50, 100ppm의 공급수 농도로 실험을 하였다. 대체적으로 고압에서 높은 제거율을 얻을 수 있었으며, 고농도에서 높은 제거율을 얻을 수 있었다. 세정한 폐필터에 대한 결과 값으로 미루어 보았을 때, 세정효과가 큰 것을 확인할 수 있었다. 이온교환수지 도 3개회사의 제품을 사용하였으며, 같은 농도하에서 수지의 양을 달리하여 제거율을 비교하였다. 비교적으로 요오드보다 세슘에 대한 제거율이 높았으며, 혼합수지에 비해 단일수지의 제거율이 높은 것을 확인 할 수 있었다.
The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with K+. A comparison to Na+ and H+ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the K+ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.
Very recently, an efficient electrochemical desalination process employing bipolar membranes with large ion-exchange area is being developed (so-called ‘electro-adsorptive deionization’). In this process, ions dissolved in a feed solution can be removed through an ion-exchange mechanism under a strong electric field (a forward bias condition). The membranes can also be regenerated without the use of additional chemicals by the water-splitting reactions which occur at the bipolar junction of membranes (a reverse bias condition). In this work, we have developed novel bipolar membranes containing iron oxide/hydroxide catalysts. In addition, the ion-exchange capacities of the bipolar membranes have been largely enlarged by embedding finely powdered ion-exchange resins. (No. 10047796) (No. 2015H1C1A1034436)
In order to prove that perchlorate-laden resins could be bio-regenerated through direct contact with anaerobic microorganisms, two bio-regeneration systems, internal and external, were tested. Anaerobic digestion was demonstrated to be very efficient in degrading perchlorate that had been adsorbed onto A520E resin. The internal bio-regeneration test showed that the fully exhausted resins recovered about 80% of the perchlorate-exchange capacity after 4 weeks of bio-treatment in the anaerobic digester. The bio-regeneration efficiency of the external system increased with the amount of flow passed through the column. Comparison of two perchlorate breakthrough curves obtained from column test, one with virgin resin and the other with bio-regenerated resin, proved that the bio-regenerated resin could be used repeatedly to treat perchlorate in spent or waste brine. The A520E resin was very stable in the anaerobic digester and its perchlorate-exchange capacity was barely changed during 26 weeks of incubation. The most significant contribution of this research is to develop the concept of direct bio-regeneration of exhausted resins by combining physicochemical ion-exchange and biological reduction technology, especially for the removal of perchlorate.
음이온교환수지인 IRN-78및 IRN-77과의 혼합 수지를 액체 상태로 직접 분해 처리하기 위하여 Fenton 시약을 이용하였다. 개선된 분해방법의 특징은 수지를 먼저 건조시키고 용액을 수지에 완전히 흡수시킨 후 일정량의 를 첨가하여 분해반응을 유도하는 방법을 적용하였다. 촉매로서 및 IRN-77 수지의 분해시 사용한 를 각각 사용하여 각 이온교환수지의 단독 및 혼합수지의 분해에 필요한 적절한 촉매와 그의 농도 및 의 소요량을 측정하였다. IRN-78 수지에 대해 촉매를 사용한 경우, 초기 분해반응을 유도하기 위해 까지 가열이 필요하였으며, 반응유도시간은 촉매의 적정온도에서 약 20분 이내 개시되는 것으로 나타났다. 동 수지에 를 사용한 경우에는 가열 없이 즉시 분해반응이 진행되었으며 분해율도 수% 높게 나타났다. 결론적으로 IRN-78 및 IRN-77과의 혼합수지의 분해를 위한 최적 촉매는 로 나타났으며 가열하지 않고 상온에서 반응유도시간 없이 각 수지를 단독으로 분해한 경우보다 적은 양의 로 완전히 액상으로 분해시킬 수 있는 좋은 결과를 얻었다. 또한 이들 각각의 수지 및 혼합수지에 대한 적절한 촉매 및 적정 농도와 완전분해에 필요한 의 양을 제시하였다.
This study was performed to investigate the feasibility of ion-exchange resins as soil amendment. To select resins, weinvestigate four kinds of ion exchange resins, which ions have the most adsorption efficiency of ions (N+, PO4−, K+). Inthe Cation (H+) vs Anion (OH−)=1:2 (w:w), it showed that the highest N, P, K adsorption efficiency was about 80%and reached pH 6~7 & EC 1~2dS/m after 20min. The ability to maintain ion adsorption, it was investigated that thegentle curve of the residual ion ratio of nitrate nitrogen, available phosphorus, exchangeable potassium was maintained.On the other hand, the control (Slow release fertilizer) was significantly reduced under artificial rainfall conditions. Inaddition, the results of three consecutive crop test were showed that the growth of crops decreased 41.8% than the earlygrowth in the control group, whereas decreased 8.3% in the treatment group (ion exchange resins). According to the resultsof soil analysis, it was reduced that the fertilizer ingredients (N 94%, P 74.5%, K 98.6%) in the control and reducedfertilizer ingredients (N 64%, P 60.3%, K 58.4%) in the treatment. Overall, it was estimated that the Ion-exchange resinscould be used as a soil amendment.