본 연구는 우량묘 생산을 위해 신개발된 인공배지와 육묘용 배지의 이화학적 특성을 비교하고 적정 관수 간격을 구명하기 위해 수행되었다. 5종의 기존 인공배지 (유기배지인 coir, 혼합배지인 Tosilee와 Q plug, 그리고 무기배지인 LC와 rockwool)와 4종의 신개발 배지(혼합 배지인 TP-S1, 그리고 무기배지인 PU 14-S1, PU-7B, PU 15-S1)를 이용하여 토마토(Solanum lycopersicum L.) ‘예광’을 육묘하였으며, 14일간 1일(14회), 2일(7회) 그리고 3일(5회) 간격으로 관수 처리하였다. pH는 PU 15-S1 배지에서 유의성 있게 가장 높았으며, 모든 배지 에서 pH 5.17-6.90의 범위였다. EC는 Q plug 배지에서 가장 높게 나타났다. 초기발아율은 PU 15-S1 배지에서 가장 우수하였다. 최종발아율과 평균발아수는 PU 14-S1 배지를 제외하고는 모든 배지에서 유의적인 차이가 없었다. 파종 후 15일째 토마토 묘의 생육은 Q plug 배지에 서 우수하였다. 파종 후 29일 째 묘의 생육 또한 Q plug 배지에서 유의적으로 우수하게 나타났고, 다음으로 rockwool과 PU-7B 배지에서 우수하였다. 또한 생육은 1일 간격 처리에서 가장 우수한 경향을 보였다. 결과적으로 본 실험에서 토마토 육묘 시 인공배지의 적용가능성을 확인하였으며, 묘의 생육은 Q plug 배지에서 가장 우수하였다. 신개발된 PU-7B 인공배지에 양분을 첨가하고 1일 간격으로 관수한다면 Q plug 배지의 결과와 같이 우수한 토마토 묘를 생산할 수 있을 것으로 판단된다.
분무경시스템에서 분무간격과 분무시간은 식물의 생육어l 필요한 양분과 수분을 공급하기 위한 중요한 요소들이다. 이 실험은 분무경에서 분무간격이 팔레놉시스 유묘의 생육에 미치는 영향에 대하여 알아보고자 수행되었다. 배지 없이 뿌리가 나출된 생체중 16g 크기의 유묘를 사용하였다. 분무간격은 각각 10, 20, 30, 40, 50분 간격이었으며, 분무시간은 10분이었다. 총생체중, 총건물중, 분지된 뿌리수와 상대생장률은 20분과 30분 간격에서 10분, 40분, 50분 간격보다 높았다. 특히, 뿌리의 생체중은 30분 간격에서 기장 높았다. 엽장은 30분 간격에서 길었으나, 엽폭은 처리간 차이가 없었다. 10분 간격 처리에서 유묘 한 개체가 30일간 소비한 물량은 0.71L였으며, 분무간격이 증가함에 따라 그 양은 감소하였다. 15일간 소비된 양분은 칼륨이외에는 처리간 차이가 없었으며, 칼륨은 30분 간격에서 가장 많이 흡수되었다. 결과를 요약하면, 분무경 시스템에서 팔레놉시스 유묘 생산을 위한 적정 분무간격은 30분이었다.
This study was conducted to examine the effects of irrigation interval and fertilizer level on changes in soil chemical properties and growth of cut flower in soil retarding culture of standard chrysanthemum (Dendranthema grandiflorum) ‘Iwanohakusen'. The compound fertilizer (Poly-Feed, N-P-K 19-19-19) diluted with 1 g・L -1 were treated by irrigation intervals of 1 time/1 day (1.5 L・m -2 ), 1 time/2 days (1.5 L・m -2 ), 2 times/3 days (3 L・m -2 ) and 2 times/5 days (3 L・m -2 ). As irrigation interval was long, the nutrient contents of soil decreased. In 1 time/1 day treatment, NO3-N, K, and P2O5 contents of soil decreased, but Ca and Mg contents of soil did not change than before planting. The growth of cut flower, such as stem length, stem diameter, fresh weight, and weight of flower was the best in 1 time/1 day treatment, and was the worst in 2 times/5 days treatment. To examine the proper fertilizer level, the compound fertilizers (Poly-Feed, N-P-K 19-19-19) of 0.2, 0.4, 0.8, and 1.6 kg per 1.5t water were treated 1 time/1 day in 1,000 m 2 field. In fertilizer level of 0.8 or 1.6 kg, EC and nutrient contents of soil were higher or similar than before planting, and inorganic salts in soil were accumulating continuously. The growth of cut flower, such as stem length, number of leaves, weight, and diameter of flower bud was more effective in fertilizer level of 0.4 kg, but it was the worst in excessive fertilizer level of 1.6 kg. Therefore, fertigation of 0.4 kg compound fertilizer with 1 time/1 day in 1,000 m 2 field was the most effective for reasonable soil management and cut flower production of high quality in retarding culture of standard chrysanthemum ‘Iwanohakusen’.
The purpose of this study was to identify the irrigation intervals and the amount of suitable growing substrate needed to achieve the desired shallow-extensive green roof system during a dry summer in Korea. In terms of treatment, three types (SL, P6P2L2, P4P4L2) with varying soil mixture ratios and two types (15 cm, 25 cm) with varying soil depths were created. The results have been analyzed after measuring growth and soil water contents. The difference of growth by treatment was significant in terms of green coverage, height, leaf width and photosynthesis. In measurement of chlorophyll content, no difference was detected when measured against soil depth. According to the growth measurement of Zoysia japonica with respect to differing soil mixture ratios in the 15 cm-deep treatment, a statistical difference was detected at the 0.05 significance level in photosynthesis. In case of green coverage, height, chlorophyll content and leaf width, no statistical significance was observed. In case of the 25 cm-deep treatment, a statistical significance was observed in height and photosynthesis. In terms of green coverage, chlorophyll content and leaf width, no statistical significance was detected. In comparisons of soil moisture tension and soil water contents, the irrigation interval and amount were 8 days and 14.9 L in the SL (15 cm) treatment, respectively. The irrigation interval showed for 10 days a 1.3-fold increase, and the irrigation amount was 27.4 L 1.8-fold more than SL (25 cm), respectively. For P6P2L2 (15 cm) treatment, the irrigation interval and amount were 12 days and 20.7 L, respectively. However, an irrigation interval under P6P2L2 (25 cm) was for 15 days 1.3 times longer than P6P2L2 (15 cm), and an irrigation amount of 40 L was 1.9 times more than that under P6P2L2 (15 cm). In P4P4L2 (15 cm) treatment, it was indicated that the irrigation interval was 15 days, and the irrigation amount was 19.2 L. It was not needed to irrigate for 16 days under P4P4L2 (25 cm) treatment during the dry summer and the longest no-rain periods. The irrigation interval and amount under P4P4L2 were 1.8-fold and 1.3-fold, respectively, more than SL treatment as affected by soil mixture ratio. Comparatively P4P4L2 had more 1.3-fold and 0.9-fold in irrigation interval and amount more than P6P2L2. Therefore, it can be noted that different soil depth and soil mixture ratios had a significant effect on the irrigation interval and amount.